
2.160 Identification, Estimation, and Learning

Lecture 21

Part 4 Machine Learning and Nonlinear System Modeling

Deep Learning:
CNN and RNN

H. Harry Asada
Department of Mechanical Engineering

MIT

1

Recap
• Artificial Neural Network
– Basic neural network model
– Widrow-Hoff stochastic gradient

descent method
– Nonlinear classification : XOR

problem
– Multi-layer neural net
– The Error Back Propagation

Algorithm
– Sigmoid output function and stability
– Momentum term for smoothing
– Local minima
– Mini-batch training
– Hyperparameters

Layer 0

Layer 1 Layer m
Layer M

()y tˆ(|)y t q

The Hebbian Rule

Input out put

 fired fired

Synapses

3

Forward Computation

Backward Computation

The Error Backpropagation Algorithm
[Wobas 1974, 1994] [Rumelhart, Hinton, & Williams,1986]

Recap

Deep Learning
qIssues on training a Multi-Layer Neural Network
– Over fitting and validation of training
– Gradient vanishing

qConvolutional Neural Network (CNN)
– Dropout and focused connection
– Automatic feature extraction
– Abstraction via pooling

qRecurrent Neural Network (RNN)
– Time series data processing
– Backpropagation through time (BPTT)
– Long-Short Term Memory (LSTM)

4

Layer 0

Layer 1 Layer m
Layer M

()y tˆ(|)y t q

Error Backpropagation• Local minima
• Slow convergence
• Over fitting
• Gradient vanishing
• Hyperparameter tuning: how many layers, how many

hidden units? 5

6

qOverfitting is a fundamental problem in all areas of system identification and
data-driven system modeling;

qTheory: Akaike’s Information Criterion (AIC) tells us a reasonable system
order, given a dataset (N>>1);

qNo other theoretical method is available: Empirical judgement of the engineer

Validation of Learned (Identified) Model
Neural Network can be trained for a set of
training data, but it may not work for new
data. How can we validate a trained N/N
whether it works well for data not involved in
the training data?

X =

x1(1) ! x1(N)

! " !
xn(1) ! xn(N)

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Y =
y(1)
!
y(N)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟Entire Data

Training Data
Validation Data not used for
training, but for evaluation

7

{ }((), ()) | 1, ,u i y i i N= ! Training Data
Validation Data{ }((), ()) | 1, , Validu i y i i N N N= + +!

Over-fitting

8

Validation
Test Error

&
Training Error

Validation Error

COP #4
Please try Validation Tests

Training
Error

Too many units;
too many hidden units

9

• Conventional wisdom
in the early days of
neural nets: prefer
small networks
because fewer
parameters (i.e.
weights & biases) will
be less likely to over-fit

Va
lid

at
io

n
Te

st
 E

rr
or

• Somewhat more recent wisdom: if early stopping is used,
larger networks often behave as if they have fewer
“effective” hidden units, and find better solutions

- Asymptotic variance analysis

10

Data augmentation
for avoiding overfitting and improving robustness

• Turn one positive (negative) example into many
positive (negative) examples: Proliferation
• Image data: rotate, re-scale, or shift image, or flip

image about axis; image still contains the same
objects, exhibits the same event or action

11

More data than the number of weights

12

Deep

Shallow but wide

An Architecture Issue

3-Layer Neural Network

The 3-layer neural network is a universal approximation function that
can approximate an arbitrary (measurable) function to any accuracy.

For an arbitrary (small) , there exists a finite number of neural
net units m, such that

Hidden LayersInput Layer Output Layer

u

y

ˆ() (; ,)y u y u mq e- <

0e >

Hidden units are essential for
representing a nonlinear function.

13

Universal Function Approximation Theory

14

• According to the universal approximation theory,
3-layer network with one hidden layer is good
enough to approximate any measureable
nonlinear function.
• However, Deep Neural Net has fewer weights to

tune than shallow / wide networks to represent
the same nonlinear function.
• Deep Neural Net has more flexibility in

architecture and algorithm.

Deep

Shallow but wide

The more hidden layers a multi-layer NN has, the better it
represents a highly nonlinear relationship.

Deep
How can we train many layers of hidden units? 15

Layer 0

Layer 1 Layer m
Layer M

()y tˆ(|)y t q

Error Backpropagation

q Error does not propagate deep into early layers;
q Delta d consists of products of g’ and weights w; if one of them becomes zero, it

vanishes.

16

δ deep = − ∂E
∂zdeep

= ! (yi − ŷi)∑∑∑ g '(zi)
∂zi
∂x j

g '(z j)
∂z j
∂xk

g '(zi)
∂zk
∂xℓ
"

= " (yi − ŷi)∑∑∑ g '(zi)g '(z j)g '(zi)!wijwjkwkℓ"

17

The error does not
propagate further.

g’

Recap

Sigmoid Function

g(z) = 1
1+ e− z

() max (0,)f x x x+= =

() log(1 exp)f x x= +

18

Alternative activation functions

SoftPlus function

The derivative is the sigmoid function.

Propagation of error does not diminish.d

Layer 0

Layer 1 Layer m
Layer M

()y tˆ(|)y t q

Error Backpropagation• Local minima
• Over fitting
• Slow convergence
• Error does not propagate deep into early layers;
• Architectural parameter tuning: how many layers, how

many hidden units? 19

20

• Training of a fully-connected multi-layer neural net is a
challenge;

• Divide and Concur: Train a set of smaller-scale
networks and combine them.

Shut down
(50%) of units

21

• Divide the entire units into several groups, and train
each group at a time;

• Fewer parameters: faster in conversion.
Shut down

(50%) of units
Shut down another

(50%) of units

22

• Combine all the trained units;
• Multiply each trained weight by

fraction of times node was used
during training;

• Ensemble mean: more robust.

If one unit was shut down 80% of the time during individual dropout
training, the weights trained are multiplied by 0.2 when combined:
statistical mean.

Convolutional Neural Network (CNN)
• Fully-connected multi-layer neural network does not scale

well, particularly for processing a visual image;
• Focused connection is more effective.

23

300 x 300 x 3 = 270,000 pixels

At least, 270,000 x # units
for the first hidden layer
must be tuned.

24

q Research on the brain suggests that an image captured at the retina is first
processed locally, extracting low-level features, and is passed on to a next level ,
where more complex features are extracted. Inspired by this, a hierarchical
artificial neural network has been developed.

q Hubel and Wiesel, 1959
q Neocognitron, Fukushima 1979

The visual cortex is
sensitive to sub-regions.

25Detection of edges

Perception of a face

Detection of eyes, nose,
mouth, etc.

Integration,
Abstraction

Integration,
Abstraction

Focused areas

Receptive Field

Local Connection Integrated Features

26

Feature
Extraction Layers Classification Layers

In
pu

t L
ay

er

A Convolutional Neural Network consists of three different types of layers:
• Input Layer distributes inputs to the following layers;
• Feature extraction layers are connected to specific local regions of input layers, extracting

local features; and
• Classification Layers are a fully-connected multi-layer neural network, producing outputs.

RGB

27

.8 .1

.5

.6

.8

.3

.2

.4

.7

= .8x(-1)+.4x0+.1x1
+.8x(-2)+.5x0+.2x2
+.7x(-1)+.6x0+.3x1

= -2.3
.8 .1

.5

.6

.8

.3

.2

.4

.7

= 0.5

Feature Extraction via convolution

q In computer vision, local features, such as edges, are detected by using spatial filters;
q A spatial filter (2D template) is overlaid with the original image to evaluate whether the local

image matches the template.
q The computation used is basically correlation, or convolution (abuse of terminology).

Local image pixcels Spatial filter / kernel

Detecting a
vertical edge

Detecting a
horizontal edge

28

q Convolutional Neural Network uses the same
local spatial filter / kernel for extracting local
features.

q Each segment of input array (image pixels) is
convoluted with a template (convolutional
kernel);

q The weighted sum of the input segment is
computed for all the segments, by shifting the
window to cover all the input array.

q The major difference from the standard spatial
filters is that in CNN these filters are weights of
neural units and are generated through learning.

z

29

Feature Extraction

z

Filter / Kernel

The parameters of a
filter / kernel are
weights of a neural
unit, while the
corresponding local
array of data (e.g.
pixels) are fed into the
inputs to the neural
unit.

1 w0Bias

z

30

Local Feature Extraction through Convolution

z

z

31

Parameter Sharing

q Local features, such as horizontal
edge and corner, should be found
across the entire image (data).

q Therefore, the same filter / kernel
should be used everywhere:
parameter sharing.

q This also implies that such features
are location invariant: applicable to
all regions.

q This parameter sharing also reduces
the number of parameters to train.

32

Parameter Sharing

z

z

z
All the neural units
within the same layer of
feature extraction share
the weights.

33

Creating Multiple Local Filters
q Multiple filters are needed for detecting various local features,

including vertical, horizontal, oblique edges.
q Independent multiple neurons are used for creating multiple local

filters, each of them is trained with different initial weights.

z

z

z

z Di
ve

rs
e

In
iti

al
 C

on
di

tio
ns

z

34

Feature extraction with neural units

Activation Map
(Feature Map)

Since the same neural unit (filter) is used for
the entire input array, it can be said that
each local array of input is fed to the single
neural unit one by one and the result is
stored in an “activation Map”, of a feature
map.

35

z

z

z

z

z

Multiple Filters and a Stack of Activation Maps

Each filter (kernel) detects a
particular feature associated
with a single neural unit.
We can use multiple filters to
detect various features.
As a result, a stack of
activation maps are
generated.

Stack of Activation Maps

36

Input Volume

Each filter is applied across the width and
height of the input volume by sliding on it,
but the depth is fixed and fully connected.R G B

z

Each filter is applied for every
depth of the input volume.

CNN feature extraction finds strong local correlations in Receptive Field.

37

Input Volume Stack of Activation Maps

R G B

Volume to Volume Processing all created by
structuring the connectivity of neural network.

38Detection of edges

Perception of a face

Detection of eyes, nose,
mouth, etc.

Integration,
Abstraction

Integration,
Abstraction

Focused areas

Receptive Field

Local Connection Integrated Features

39

Pooling: Integration and Abstraction

Max Pooling

Average Pooling

Layer m
Layer m+1

Layer m+1

Activation
Map

40

• Convolutional layer and pooling layer are paired and repeated
several times.
• As the layers proceed, more abstract and higher-level features are

detected.

Alternating Convolutional Layer and Pooling Layer

41

Local

More Global:
Covering a broader area

More abstract
Higher-level features

42

()y tˆ(|)y t q

Pooled Activation Map

Ex
tr

ac
te

d
hi

gh
-le

ve
l f

ea
tu

re
s

Classification Layer

Fully-connected multi-layer neural network

Probability
of each class

e.g. 80% cat, 10% dog, 10% squirrel

Error Backpropagation

43

z

z

z

z

z

Training of feature detector filters

Error Backpropagation
Forward

Propagation

Randomize the initial
conditions (Values of
weights) for individual
units, and let them
converge to local minima.

Still challenging, so…
Training a deep neural network based on End-to-End
error backpropagation remains a challenge.
• Feature extraction layers can be trained more easily by

using existing (already-trained) layers of neural units.
We can use the trained weights as “initial conditions”
for the feature extraction training for a specific class of
images (data).

• The classification layer training can be performed by
training layer by layer using the auto-encoding
technique.

• Recent trend is more relying on the computing power
that increased dramatically.

44

45

Summary of CNN

• CNN feature extraction layers seek features through spatially local
correlation/convolution in a receptive field.

• This is made possible by limiting the connectivity and structuring the network where
individual units are connected only to specific group of units.

• The structure is described with specific parameters, called hyper-parameters:
• Filter / kernel size: width, height, depth
• Filter count
• Stride: Horizontal and vertical
• (Zero-padding handling edge / boarder effect)

• Use of CNN further requires specifications of
• Pooling: Max Pooling, Average Pooling
• Pooling filter size
• The number of alternating convolutional layers and pooling layers
• The structure hyperparameters associated with classification layers.

46

Time Series Data Analysis

qVoice recognition
qLanguage translation
qVideo processing
qWord completion

qStock market prediction
qAirline passenger prediction

qWeather forecast
qOcean monitoring

qCardiovascular monitoring
qFall prediction

A central theme of 2.160

47

Auto regression

The Jordan Network:
Feedback from the output unit.

Elmer Network, LSTM, GRU: Feedback from hidden units.

48

Recurrent Neural Network in a Nutshell:
Vanilla Elmar Network

Hidden Layer 1

Hidden Layer k

Hidden Layer 2

Input Layer

Output Layer

Input @ t

Input @ t+1

Input @ t+2

Input @ t+k

q Consider a multi-layer
neural network with T-
hidden layers, receiving
a discrete-time input
sequence,

u(t), t = 1,2,3,…, T
q In the k-th hidden

layer, neural units
receive signals from the
previous hidden layer,
k-1, as well as from the
(t+k)-th input, u(t+k).

q Blending both signals,
the hidden units
produce outputs for
the next layer until it
reaches the output
layer.

q If we want to deal with an input
sequence having an arbitrary length,
this architecture is not appropriate.

q Assuming all weights in the hidden
layers are the same, this multi-layer
network can be folded down to the
recurrent network below.

Input Layer

Hidden Layer 1

Output Layer

49

g(z j
h)

Σ
g(z1

h)
Σ

g(zH
h)

Σ

g(z1
o)

Σ
g(zL

o)
Σ

Input

Output

wji
out

wji
in

Notation

q Input:

qHidden unit outputs (State):

qOutput:

qWeight from input unit i to
hidden unit j:

qWeight from hidden unit i to
hidden unit j:

qWeight from hidden unit i to
output unit j:

u(t) = u1(t),u2 (t),!,uI (t)()T ,t = 1,!,T
x(t) = x1(t),x2 (t),!,xH (t)()T

y(t) = y1(t), y2 (t),!, yL(t)()T

wji
in

wji
out

y(t) = y1(t), y2 (t),!, yL(t)()T

u(t) = u1(t),u2 (t),!,uI (t)()T

x(t) = x1(t),x2 (t),!,xH (t)()T

50

g(z j
h)

Σ
g(z1

h)
Σ

g(zH
h)

Σ

g(z1
o)

Σ
g(zL

o)
Σ

q−1 q−1q−1

Input

Output

wji
out

wji
in

wji

Notation

q Input:

qHidden unit outputs (State):

qOutput:

qWeight from input unit i to
hidden unit j:

qWeight from hidden unit i to
hidden unit j:

qWeight from hidden unit i to
output unit j:

u(t) = u1(t),u2 (t),!,uI (t)()T ,t = 1,!,T
x(t) = x1(t),x2 (t),!,xH (t)()T

y(t) = y1(t), y2 (t),!, yL(t)()T

wji
in

wji

wji
out

y(t) = y1(t), y2 (t),!, yL(t)()T

u(t) = u1(t),u2 (t),!,uI (t)()T

x(t) = x1(t),x2 (t),!,xH (t)()T

The hidden
layer stores
previous states.

51

g(z j
h)

Σ
g(z1

h)
Σ

g(zH
h)

Σ

g(z1
o)

Σ
g(zL

o)
Σ

q−1 q−1q−1

Input

Output

wji
out

wji
in

wji

y j (t) = g(z j
o(t))

Forward Pass Computation

qHidden units

qHidden unit outputs (State):

qOutput units:

qOutputs

z j
h(t) = wji

in

i=1

I

∑ ui (t)+ wjk
k=1

H

∑ xk (t −1)

x j (t) = g(z j
h(t))

y(t) = y1(t), y2 (t),!, yL(t)()T

u(t) = u1(t),u2 (t),!,uI (t)()T

x(t) = x1(t),x2 (t),!,xH (t)()T

z j
o(t) = wji

out

i=1

H

∑ xi (t)

52

g(z j
h)

Σ
g(z1

h)
Σ

g(zH
h)

Σ

g(z1
o)

Σ
g(zL

o)
Σ

Input

Output

wji
out

wji
inwji

y(t) = y1(t), y2 (t),!, yL(t)()T

u(t) = u1(t),u2 (t),!,uI (t)()T

x(t) = x1(t),x2 (t),!,xH (t)()T

g(z j
h)

Σ
g(z1

h)
Σ

g(zH
h)

Σ

g(z1
o)

Σ
g(zL

o)
Σ

q−1

q−1

q−1

wji
out

wji
in

wji

53

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

u(1) u(2) u(T)

y(1) y(2) y(T)

q Unfolding the RNN in time by stacking the identical copies of the RNN and redirecting connections
within the network to obtain connections between subsequent copies.

Unfolding the RNN in time

54

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

u(1) u(2) u(T)

ŷ(1) ŷ(2) ŷ(T)

Training of RNN

y(2)y(1) y(T)

q Target output (training data) is given to each output:

q Loss Function to minimize E = y(t)− ŷ(t)
2

t=1

T

∑ = E(t)
t=1

T

∑
y(1) y(T)

55

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

u(1) u(2) u(T)

ŷ(1) ŷ(2) ŷ(T)

Back Propagation Through Time (BPTT)

y(2)y(1) y(T)

q The standard Error Back Propagation algorithm cannot be directly applied to RNN.
q However, the unfolded RNN allows us to apply the same chain rule.

E = y(t)− ŷ(t)
2

t=1

T

∑

δ j = − ∂E
∂z j

Δwji = ρδ j xi

56

Hidden Layer

Input Layer

Output Layer

u(T)

ŷ(T)

Back Propagation Through Time (BPTT)

y(T)q We start with the final time layer T, where
output y(T) is directly provided:

E = 1
2

y(t)− ŷ(t)
2

t=1

T

∑δ j = − ∂E
∂z j

§ Output units in time layer T

δ j
o = − ∂E

∂z j
o = (y j (T)− ŷ j (T))g '(z j

o(T))

§ Hidden units in time layer T

δ i = − ∂E
∂zi

= δ j
o(T)wji

out

j
∑ ⋅ g '(zi (T))

wji
out Backpropagate

g(z j
o)

Σ

wji
out

g(zi
h)

Σ

δ j
o

57

Back Propagation Through Time (BPTT)

q Move back to earlier time layer:

E = 1
2

y(t)− ŷ(t)
2

t=1

T

∑δ j = − ∂E
∂z j

§ Output units in time layer t

δ j
o = (y j (t)− ŷ j (t))g '(z j

o(t))

§ Hidden units in time layer t:

Backpropagate

Hidden Layer

Input Layer

Output Layer

u(t)

ŷ(t)

y(t)1≤ t ≤ T −1

δ ℓ(t +1)

58

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

u(1) u(T)

ŷ(1) ŷ(T)

Weight Changes for BPTT

y(1) y(T)

q The units in all time layers share the weights.
q (weight update)=(sum of corrections of all time layers)

Δwji = ρ δ j (t)xi
t=1

T

∑ (t −1)

u(t)

ŷ(t)

y(t)

wji
out

wji
in

wji

Δwji
in = ρ δ j (t)ui

t=1

T

∑ (t)

wji
out wji

out

wji
wji
in wji

in

59

Drawbacks of Back Propagation Through Time (BPTT)
qAs the time layers extend, (large T), the error backpropagation through time tends

to vanish.
qThere are a few techniques and network architectures that have been proven to

be effective for coping with the vanishing gradient problem.
qThese include Long-Short Term Memory (LSTM) network, which has been used

extensively.

60

A A

Long Short Term Memory network architecture

Forget

Store

Update

Output

Cell State: c

Hidden State: h

qMore control over information transmitted
qDiscard irrelevant information based on new input and the previous state ht-1, Forget
qStore relevant information taken from new input and the previous state: Store and Update
qMaintain an uninterrupted gradient flow : Separate cell states from outputs à Highway

Uninterrupted gradient flow

Reflection
• Strong points of deep neural nets
– Error backpropagation with improved activation functions, e.g. ReLU, and

control of information flow (LSTM)
– Automatic feature extraction through end-to-end learning, e.g. CNN
– Focused connection and hierarchical structure (CNN)
– Capturing of time series information (RNN)

• Clever, but unsure
– Early stopping for preventing over fitting
– A lot of hacks: Dropout; Momentum term; Randomized weights, Data

augmentation, etc.
– Altering convolution and pooling
– The lack of fundamental theory: unaccountable results

61

