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Rank-Deficit Data Matrix

In previous chapters on Least Squares Estimate and Recursive Least Squares, we assumed that

t
Zgo(i)goT (i) = Non-singular, F, = Positive — Definite
i=1
This assumption may not be valid for:

U High input dimension: m >> 1 Q Limited sample size: N < m
 Temporal case, e.g. a wide time window, « Difficulty in obtaining a large
slowly-decaying FIR model number of data under consistent

conditions, e.g. clinical trial data,
biological experiment

/\/\

()= (), y(t—m) @)= (u(t=1),---, (1 — m))” L'I’r‘;)+etd. Bio-System —QutPut

e Spatial case, e.g. image data

— \ Many parameters

Pixels: m = (# of row) x (# of column)

1 When we do not know which input signals are important, we include as many potentially

important inputs as possible. ’



t
Here we consider the case N<m, and/or > ()¢’ (i) is singular
i=1

Approach ® =[p(1),--,0(N)] € RN

1. Use the pseudo-inverse

2. Regularization (
* Ridge Regression

3. Statistical Multivariate Analysis
* Principal Component Regression m <
* Partial Least Squares Regression

= <



1. Quick Math : Moore-Penrose Pseudo-inverse

Consider a linear simultaneous equation: Ax =b where A: m X n

 If there is no solution to Ax = b, then the pseudomverse of 4,
denoted 4% , minimizes the squared error |Ax b‘ and is

iven b
. Yoo =(AT ) A"

With this, the solution is* = A4
This corresponds to the Least Squares solution:

-1
=[2¢(i>¢7"<z'>) Y o()y(i)
i=1 i=1

 If there are many (infinite) solutions to Ax = b, e.g. n > m,
then the pseudoinverse A" provides the solution that
minimizes the square norm of vector x.

min|x|2 subject to Ax=b

= A%p Such that Ax=b and min|x|2

Definition

Given a matrix 4 € C™"
the matrix 4" e ¢
that satisfies the
following four conditions
is called the Moore-
Penrose Pseudoinverse:

1.AA" A=A

2. 4" AA" = A"
3.(AA4")* = AA"
4.(A"A)*=A"4

where (X)* is conjugate
transpose of X.

A pseudoinverse is unigue.



Exercise:
Show that the Least Squares Estimate below is given by the pseudoinverse
of the matrix concatenating all the regressor vectors

D= [@(1), ) 9€D(N)] < g{mXN

~1
6 = [Zw(i)qo%)] D (i) y(i)
i=1 i=1

{
0=(d")'Y
where
BOR
r=| o'o=Y

(1)
\




2. Ridge Regularization

2 2
Consider a cost functional (penalty): V,(0) = ‘Y— (I)TH‘ + 7]‘9‘

where 1 >0 isa weight that determines the trade-off between the squared
prediction error and the magnitude of the parameter vector.

Find the parameter that minimizes it: éR = argmin Vy (0)
dV,(0)
do

0

—0 = di{(y—cDTe)T(Y—ane)meTe}: d%[YTY—zchDTeJrequpTeJrneTe}

This is only positive semi- The identity matrix

definite; not invertible. IS p05|t|ve definite.
OD' 6+ 16 = DY bd)d) )60 =

Positive- deflnlte, invertible

= (@D +nl)"'dY

As long as 11 > 0, a unique solution is obtained.
Regularization is a standard technique when you have some knowledge about an appropriate solution.



Initial Conditions for Recursive Least Squares can be viewed as a type of regularization.

f20 (et U Consider the following cost function J,. The
—0— ¢ parameter vector € that minimizes J, is the
| initial condition &,,.
(). 1(®) R
Jo=5(0-6)" F'(6-6,)
P()_1 - 2¢(0)§0T (), 1 As shown ir;]Lec’;]ure Notes Crapter 2 Sectioln 2.4,hwe
3 ] can prove that the recursive least squares algorithm,
By = Zw(.)y(.)’ starting with the initial conditions 8,and P,, is the
90 = P()Bo optimal value that minimizes the following cost
function.
LN T 2y L T p-1
 Suppose that before ¢ = 0, there J, = EZ(y(z)— o (i)-0) + 5(0— 6, K, (0-6,)
were some data @(®),y(®) . i=1
Regularization
dP,, By, and &, were computed d The second term above can be viewed as a

based on these data. regularization term.



3. Statistical Multivariate Analysis

JExamine relationships among multiple variables in a high dimensional space;
dJoint behaviors of multiple variables may indicate some redundancy, and two variables may be
linearly correlated: collinear.
JWe are interested in extracting succinct, significant variables from high dimensional raw data;
Latent Variable Method is to find hidden or encapsulated variables in the raw data that
represent the raw data in a low dimensional space: Latent Model.
JPredict the output from the low-dimensional latent model
* Principal Components Analysis and Regression
e Partial Least Squares Regression

m*<m .
Prediction of output

N<m (dependent variables)
— y from the low-dimensional

latent model

Latent Model y=0'0

Raw data




Pre-Processing

1 A regressor vector contains multiple variables having
different units and scales; Example: ¢ = (10 kg, 5 m/s, 2 cm)".
(1 To make an apple-to-apple comparison, the variables must

be normalized. o, || o ‘
** Mean-centering ** Normalization with some refer‘ence v:aIu‘e -
Shift the origin to the mean (51. ¥ = P, — @,- Input Data Matrix
l < X=[ x(1) -+ x(N) }eiﬁmx}v
Q, = 0 _@i reference value: O

e Standard deviation

* Max — Min (dynamic range)
( A Output Data Matrix
X
1 — —_
v=| ¢ |exm y(1)
x. Y = : e RV
. y(N)




4.1 Principal Component Regression: A Multi-Input, Single-Output Case

(J Examine how input data are distributed in the m-dim space and reduce the space to a low
dimensional space;
[ The distribution can be characterized with the covariance of preprocessed input data:

X:[ x(1) - x(N) }eiﬁmXN

Recall we have defined Covariance of two scalar random variables, X'and Y, as
cov(X,Y)= E[(X - E[X]|)(Y - E[Y])]

Covariance of a vector consists of covariances of all the combinations of the vector components.

X, Elx;] Elxx ]
C=cov|| i fx wox,)|=| i i |=EXT)
| E[x, x,] E[x’]

Note that input data have been mean-centered.



Principal Component Regression - 2

 What is the physical sense of the covariance matrix? X |
J How can we use it for latent modeling? X

Recap Examine the strength of signals in the direction of unit vector v.

N 2 ‘
J= %;‘vTx(i)‘ = %ZvTx(i)-xT(i)v = %VT (Zx(i)-xT(i))v sz
i T X
| ORI 1
=—VT[ x(1) - x(N) J : v=—v' XXy
N . iy Dy xT(N) N
X

i -
The j-k component of matrix XX ﬁ{ j(l)xk(l)+---+xj(N)xk(N)} = E[xjxk] J=vICy

Find the strongest direction of signal in the input space : an eigenvalue problem.

v:argmax(vTXXTv—l(vTv—l)) m) XX y= v

Eigenvalues:  ,  _ 72 59 5..521 >0

max 1 2 m 11



Principal Component Regression - 3

/lmax = )“1 2 )‘2 Ze 2 /lm >0 In practice, some eigenvalues are
We are considering the case where XX’ =C: singular. small but not exactly zero. We can
_ truncate them with a threshold.
Suppose that the last (m— m*) eigenvalues are zero.
Percent Accuracy: a measure for
A =M 22y 224,,>0  4,=0,4, =04, = truncation
i ] A+A++A
A, o 0 - 0| _ =1 2 £ % 100%
! T Hi A+ A+t A i
. . . vl R m
; : ; \
T : 100 \ e
XX =[v,-v ] 0 - 0 : \
: : T
: 0 Vin Threshold
0O --- 0 --- 0 |- -
S XX =29y et v v 0440 I 1 /
0 | — ——
A Ay o Apvoee A .
The first m* components can generate

. Truncate the series at m* < m.
and fully explain the data.

12



Principal Component Regression — 4 N
(PCR) X
Step 1. Reduce the input space and represent it with Principal Components

S XX =yl Ak A v v 0440
m m m

Define m*< m Latent Variables using eigenvectors
associated with the top m™ most significant eigenvalues

_ T _..T T

1

Step 2. Construct a low-dimensional regression on the Principal Components

j/:blzl+b222+ ---+bm*zm* m* < m
( \ 1 _
b ( N : )
bl z,(7) z,(i)
o=| 2 =T (zl(i) zm*(z’)) S
1 iz () |z ()
k b . )L \ J - 4L \ J ]

Non-Singular N



Applications

Where is PCR needed (other than COVID testing)?
These days we deal with large data.

Visible & UV
Radiation

Woods Hole
Oceanographic gesses
Institution

d High input dimension: m >> 1. Initially we do
not know which variables are significant. We
include many possible variables in the input
space.

 Grid sampling of distributed systems

* e.g. Ocean monitoring

* e.g. Weather forecast
d Human body movements

 The human has over 200 muscles.

* Asingle hand has at least 19 joints.
 Bio informatics

= e.g. Proteome

* The entire organism of a yeast fungus

contains 4,399 proteins (2006).



Context-Oriented Project of 2019 (Not an assignment for this year)

Q At least 19 joints are involved in a single human hand, but the movements of the five fingers are highly
coordinated, following some functional relationship. The central nerve system does not control each
muscle individually, but control them as a group. In biomechanics and motor control literature, this is
called “Synergy”.

O This means that 19-dimensional data of the joint angles, when grasping daily choir items, for example,
are distributed in a much smaller subspace. This can be analyzed by using Principal Components.

O Santello, et al measured the posture of five fingers when grasping 100 daily chore items. Two principal
components explain over 80 % of data.
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M.Santello, M .Flanders, J.F.Soechting, “Postural synergies for tool use,” Journal of Neuroscience. Volume 18: 10105-10115, 1998 Dec.1



Applying the grasR
posture synergy theory
to the 7-fingered hand

Hybrid Human-Robot Finger System
5+2=7

Hypotheses

|. There exists a type of “Synergy” among
the 7-fingers.

2. The SR Fingers can be controlled in
correlation with the five fingers

* Control Supernumerary Robotic Finger based
on human finger posture measurements




Data Set*

Grasp Posture Data

Robot
Finger 1
3 DOF

Human

—

X = [Joint angles of thumb; )

: 7 fingers (5 human fingers + 2 robotic fingers)

index;
middle; b
ring; and

pinky fingers; )
robot finger 1;
robot finger 2]

19 joints

} 6 joints

25 dimensional vector

X4O observations

>

Mean-
Centering

* Note that each measurement of 25 joint angles forms a row vector.

Data Covariance

cov(X) = E[(X - X)X - X)]

1 & . _
=— Y (x'—Xx) (X'
N_ll_:Zl( ) <17



PCA of 7-finger grasps

M Input space = 25 dimensional
space 100
 Only the first 3~4 components aok
span the data space.

Approximation Accuracy using PCR: Fingers and Robot

80 |

70

B0

Percentage Accuracy
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| ——
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10} I I
D I &
1 2 3 4 5 b

Principal Components




Now that postural
synergies exist for the
7 fingers, can the SR*
Fingers be controlled in
correlation with the
human fingers?

Hypotheses 2

If so, how?

* Supernumerary Robotic (SR) Fingers

19



lnput x-

A new mathematical tool is needed for the robot finger control.

Data Set

Splitting the
data set into
Input and
Output
matrices

Human

Robot

Human Fingers:

19 joints

Principal Component
Regression (PCR)
Or
Partial Least
Squares Regression

Robot Fingers:
6 joints

Output

20



Principal Component Regression

1st
component

2nd component 3rd component

21



Implementation

Intuitive, implicit control of the Extra Fingers

Eigen Mode 1

Eigen Mode 2

Eigen Mode 3

Estimation of Latent '
Variables —>
Map to Robot

Finger Posture

Measurement of
3 most significant

components >
Human z .
Fin 1 '
ger Z » Robot Joint
Posture: 2 ' 6OD(())F oints
19 dim. Z3 ’

A 4

v

VYV VPV V V V V VvV VY V L 28 28 2 A A A /




