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Recap
• Artificial Neural Network
– Basic neural network model
– Widrow-Hoff stochastic gradient 

descent method
– Nonlinear classification : XOR 

problem
– Multi-layer neural net 
– The Error Back Propagation 

Algorithm
– Sigmoid output function and stability
– Momentum term for smoothing
– Local minima
– Mini-batch training
– Hyperparameters 
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Forward Computation

Backward Computation

The Error Backpropagation Algorithm
[Wobas 1974, 1994] [Rumelhart, Hinton, & Williams,1986]

Recap



Deep Learning
qIssues on training a Multi-Layer Neural Network
– Over fitting and validation of training
– Gradient vanishing

qConvolutional Neural Network (CNN)
– Dropout and focused connection
– Automatic feature extraction
– Abstraction via pooling

qRecurrent Neural Network (RNN)
– Time series data processing
– Backpropagation through time (BPTT)
– Long-Short Term Memory (LSTM)
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Error Backpropagation• Local minima
• Slow convergence
• Over fitting
• Gradient vanishing
• Hyperparameter tuning: how many layers, how many 

hidden units? 5
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qOverfitting is a fundamental problem in all areas of system identification and 
data-driven system modeling;

qTheory: Akaike’s Information Criterion (AIC) tells us a reasonable system 
order, given a dataset (N>>1);

qNo other theoretical method is available: Empirical judgement of the engineer



Validation of Learned (Identified) Model
Neural Network can be trained for a set of 
training data, but it may not work for new 
data. How can we validate a trained N/N 
whether it works well for data not involved in 
the training data?
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Training Data
Validation Data not used for 
training, but for evaluation

7



{ }( ( ), ( )) | 1, ,u i y i i N= ! Training Data
Validation Data{ }( ( ), ( )) | 1, , Validu i y i i N N N= + +!

Over-fitting
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Validation
Test Error

&
Training Error

Validation Error

COP #4
Please try Validation Tests

Training 
Error

Too many units;
too many hidden units
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• Conventional wisdom 
in the early days of 
neural nets: prefer 
small networks 
because fewer 
parameters (i.e. 
weights & biases) will 
be less likely to over-fit
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• Somewhat more recent wisdom: if early stopping is used, 
larger networks often behave as if they have fewer 
“effective” hidden units, and find better solutions

- Asymptotic variance analysis
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Data augmentation 
for avoiding overfitting and improving robustness

• Turn one positive (negative) example into many 
positive (negative) examples: Proliferation
• Image data: rotate, re-scale, or shift image, or flip 

image about axis; image still contains the same 
objects, exhibits the same event or action
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More data than the number of weights
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Deep

Shallow but wide

An Architecture Issue



3-Layer Neural Network

The 3-layer neural network is a universal approximation function that 
can approximate an arbitrary (measurable) function to any accuracy.

For an arbitrary (small)            , there exists a finite number of neural 
net units m, such that 
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Hidden units are essential for 
representing a nonlinear function.
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Universal Function Approximation Theory
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• According to the universal approximation theory, 
3-layer network with one hidden layer is good 
enough to approximate any measureable 
nonlinear function. 
• However, Deep Neural Net has fewer weights to 

tune than shallow / wide networks to represent 
the same nonlinear function.
• Deep Neural Net has more flexibility in 

architecture and algorithm.

Deep

Shallow but wide



The more hidden layers a multi-layer NN has, the better it 
represents a highly nonlinear relationship.

Deep
How can we train many layers of hidden units? 15
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Error Backpropagation

q Error does not propagate deep into early layers;
q Delta d consists of products of g’ and weights w; if one of them becomes zero, it 

vanishes.
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The error does not 
propagate further.

g’

Recap

Sigmoid Function

g(z) = 1
1+ e− z
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Alternative activation functions

SoftPlus function

The derivative is the sigmoid function.

Propagation of error     does not diminish.d
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Error Backpropagation• Local minima
• Over fitting
• Slow convergence
• Error does not propagate deep into early layers;
• Architectural parameter tuning: how many layers, how 

many hidden units? 19
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• Training of a fully-connected multi-layer neural net is a 
challenge;

• Divide and Concur: Train a set of smaller-scale 
networks and combine them.

Shut down 
(50%) of units
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• Divide the entire units into several groups, and train 
each group at a time;

• Fewer parameters: faster in conversion.
Shut down 

(50%) of units
Shut down another 

(50%) of units
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• Combine all the trained units; 
• Multiply each trained weight by 

fraction of times node was used 
during training;

• Ensemble mean: more robust. 

If one unit was shut down 80% of the time during individual dropout 
training, the weights trained are multiplied by 0.2 when combined: 
statistical mean.



Convolutional Neural Network (CNN)
• Fully-connected multi-layer neural network does not scale 

well, particularly for processing a visual image;
• Focused connection is more effective.
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300 x 300 x 3 = 270,000 pixels

At least, 270,000 x # units 
for the first hidden layer 
must be tuned.
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q Research on the brain suggests that an image captured at the retina is first 
processed locally, extracting low-level features, and is passed on to a next level , 
where more complex features are extracted. Inspired by this, a hierarchical 
artificial neural network has been developed. 

q Hubel and Wiesel, 1959
q Neocognitron, Fukushima 1979

The visual cortex is 
sensitive to sub-regions.



25Detection of edges

Perception of a face

Detection of eyes, nose, 
mouth, etc.

Integration,
Abstraction

Integration,
Abstraction

Focused areas

Receptive Field

Local Connection Integrated Features
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Feature 
Extraction Layers Classification Layers
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A Convolutional Neural Network consists of three different types of layers:
• Input Layer distributes inputs to the following layers;
• Feature extraction layers are connected to specific local regions of input layers, extracting 

local features; and
• Classification Layers are a fully-connected  multi-layer neural network, producing outputs. 

RGB
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Feature Extraction via convolution

q In computer vision, local features, such as edges, are detected by using spatial filters;
q A spatial filter (2D template) is overlaid with the original image to evaluate whether the local 

image matches the template.
q The computation used is basically correlation, or convolution (abuse of terminology).

Local image pixcels Spatial filter / kernel

Detecting a
vertical edge

Detecting a
horizontal edge
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q Convolutional Neural Network uses the same 
local spatial filter / kernel for extracting local 
features.

q Each segment of input array (image pixels) is 
convoluted with a template (convolutional 
kernel);

q The weighted sum of the input segment is 
computed for all the segments, by shifting the 
window to cover all the input array.

q The major difference from the standard spatial 
filters is that in CNN these filters are  weights of 
neural units and are generated through learning.

z
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Feature Extraction

z

Filter / Kernel

The parameters of a 
filter / kernel are 
weights of a neural 
unit, while the 
corresponding local 
array of data (e.g. 
pixels) are fed into the 
inputs to the neural 
unit.

1 w0Bias
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Local Feature Extraction through Convolution

z

z
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Parameter Sharing

q Local features, such as horizontal 
edge and corner, should be found 
across the entire image (data). 

q Therefore, the same filter / kernel 
should be used everywhere: 
parameter sharing.

q This also implies that such features 
are location invariant: applicable to 
all regions.

q This parameter sharing also reduces 
the number of parameters to train.
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Parameter Sharing

z

z

z
All the neural units 
within the same layer of 
feature extraction share 
the weights.



33

Creating Multiple Local Filters
q Multiple filters are needed for detecting various local features, 

including vertical, horizontal, oblique edges.
q Independent multiple neurons are used for creating multiple local 

filters, each of them is  trained with different initial weights.
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Feature extraction with neural units

Activation Map
(Feature Map)

Since the same neural unit (filter) is used for 
the entire input array, it can be said that 
each local array of input is fed to the single 
neural unit one by one and the result is 
stored in an “activation Map”, of a feature 
map.
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Multiple Filters and a Stack of Activation Maps

Each filter (kernel) detects a 
particular feature associated 
with a single neural unit.
We can use multiple filters to 
detect various features.
As a result, a stack of 
activation maps are 
generated.

Stack of Activation Maps
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Input Volume

Each filter is applied across the width and 
height of the input volume by sliding on it, 
but the depth is fixed and fully connected.R       G       B

z

Each filter is applied for every 
depth of the input volume.

CNN feature extraction finds strong local correlations in Receptive Field.



37

Input Volume Stack of Activation Maps

R       G       B

Volume to Volume Processing all created by 
structuring the connectivity of neural network.



38Detection of edges

Perception of a face

Detection of eyes, nose, 
mouth, etc.

Integration,
Abstraction

Integration,
Abstraction

Focused areas

Receptive Field

Local Connection Integrated Features
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Pooling: Integration and Abstraction

Max Pooling

Average Pooling

Layer m
Layer m+1

Layer m+1

Activation 
Map
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• Convolutional layer and pooling layer are paired and repeated 
several times.
• As the layers proceed, more abstract and higher-level features are 

detected.

Alternating Convolutional Layer and Pooling Layer
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Local

More Global:
Covering a broader area

More abstract
Higher-level features
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Classification Layer

Fully-connected multi-layer neural network

Probability 
of each class 

e.g. 80% cat, 10% dog, 10% squirrel

Error Backpropagation
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Training of feature detector filters

Error Backpropagation
Forward 

Propagation

Randomize the initial 
conditions (Values of 
weights) for individual 
units, and let them 
converge to local minima.



Still challenging, so…
Training a deep neural network based on End-to-End 
error backpropagation remains a challenge.
• Feature extraction layers can be trained more easily by 

using existing (already-trained) layers of neural units. 
We can use the trained weights  as “initial conditions” 
for the feature extraction training for a specific class of 
images (data).

• The classification layer training can be performed by 
training layer by layer using the auto-encoding 
technique.

• Recent trend is more relying on the computing power 
that increased dramatically.
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Summary of CNN

• CNN feature extraction layers seek features through spatially local  
correlation/convolution in a receptive field.

• This is made possible by limiting the connectivity and structuring the network where 
individual units are connected only to specific group of units.

• The structure is described with specific parameters, called hyper-parameters:
• Filter / kernel size: width, height, depth
• Filter count
• Stride: Horizontal and vertical
• (Zero-padding handling edge / boarder effect)

• Use of CNN further requires specifications of
• Pooling: Max Pooling, Average Pooling
• Pooling filter size
• The number of alternating convolutional layers and pooling layers
• The structure hyperparameters associated with classification layers.
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Time Series Data Analysis

qVoice recognition
qLanguage translation
qVideo processing
qWord completion

qStock market prediction
qAirline passenger prediction

qWeather forecast
qOcean monitoring

qCardiovascular monitoring
qFall prediction

A central theme of 2.160
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Auto regression

The Jordan Network:
Feedback from the output unit.

Elmer Network, LSTM, GRU: Feedback from hidden units.
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Recurrent Neural Network in a Nutshell: 
Vanilla Elmar Network

Hidden Layer 1

Hidden Layer k

Hidden Layer 2

Input Layer

Output Layer

Input @ t

Input @ t+1

Input @ t+2

Input @ t+k

q Consider a multi-layer 
neural network with T-
hidden layers, receiving 
a discrete-time input 
sequence, 

u(t), t = 1,2,3,…, T
q In the k-th hidden 

layer, neural units 
receive signals from the 
previous hidden layer, 
k-1, as well as from the 
(t+k)-th input, u(t+k).

q Blending both signals, 
the hidden units 
produce outputs for 
the next layer until it 
reaches the output 
layer.

q If we want to deal with an input 
sequence having an arbitrary length, 
this architecture is not appropriate.

q Assuming all weights in the hidden 
layers are the same, this multi-layer 
network can be folded down to the 
recurrent network below.

Input Layer

Hidden Layer 1

Output Layer
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Notation

q Input: 

qHidden unit outputs (State):

qOutput:

qWeight from input unit i to 
hidden unit j:

qWeight from hidden unit i to 
hidden unit j:

qWeight from hidden unit i to 
output unit j:

u(t) = u1(t),u2 (t),!,uI (t)( )T ,t = 1,!,T
x(t) = x1(t),x2 (t),!,xH (t)( )T

y(t) = y1(t), y2 (t),!, yL(t)( )T

wji
in

wji
out

y(t) = y1(t), y2 (t),!, yL(t)( )T

u(t) = u1(t),u2 (t),!,uI (t)( )T

x(t) = x1(t),x2 (t),!,xH (t)( )T



50

g(z j
h )

Σ
g(z1

h )
Σ

g(zH
h )

Σ

g(z1
o )

Σ
g(zL

o )
Σ

q−1 q−1q−1

Input 

Output 

wji
out

wji
in

wji

Notation

q Input: 

qHidden unit outputs (State):

qOutput:

qWeight from input unit i to 
hidden unit j:

qWeight from hidden unit i to 
hidden unit j:

qWeight from hidden unit i to 
output unit j:

u(t) = u1(t),u2 (t),!,uI (t)( )T ,t = 1,!,T
x(t) = x1(t),x2 (t),!,xH (t)( )T

y(t) = y1(t), y2 (t),!, yL(t)( )T

wji
in

wji

wji
out

y(t) = y1(t), y2 (t),!, yL(t)( )T

u(t) = u1(t),u2 (t),!,uI (t)( )T

x(t) = x1(t),x2 (t),!,xH (t)( )T

The hidden 
layer stores 
previous states.



51

g(z j
h )

Σ
g(z1

h )
Σ

g(zH
h )

Σ

g(z1
o )

Σ
g(zL

o )
Σ

q−1 q−1q−1

Input 

Output 

wji
out

wji
in

wji

y j (t) = g(z j
o(t))

Forward Pass Computation

qHidden units 

qHidden unit outputs (State):

qOutput units:

qOutputs
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Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

u(1) u(2) u(T )

y(1) y(2) y(T )

q Unfolding the RNN in time by stacking the identical copies of the RNN and redirecting connections 
within the network to obtain connections between subsequent copies.

Unfolding the RNN in time
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Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

u(1) u(2) u(T )

ŷ(1) ŷ(2) ŷ(T )

Training of RNN

y(2)y(1) y(T )

q Target output (training data) is given to each output:

q Loss Function to minimize E = y(t)− ŷ(t)
2

t=1

T

∑ = E(t)
t=1

T

∑
y(1) y(T )
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Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

u(1) u(2) u(T )

ŷ(1) ŷ(2) ŷ(T )

Back Propagation Through Time (BPTT)

y(2)y(1) y(T )

q The standard Error Back Propagation algorithm cannot be directly applied to RNN.
q However, the unfolded RNN allows us to apply the same chain rule.

E = y(t)− ŷ(t)
2

t=1

T

∑

δ j = − ∂E
∂z j

Δwji = ρδ j xi
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Hidden Layer

Input Layer

Output Layer

u(T )

ŷ(T )

Back Propagation Through Time (BPTT)

y(T )q We start with the final time layer T, where 
output y(T) is directly provided:

E = 1
2

y(t)− ŷ(t)
2

t=1

T

∑δ j = − ∂E
∂z j

§ Output units in time layer T

δ j
o = − ∂E

∂z j
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§ Hidden units in time layer T
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Back Propagation Through Time (BPTT)

q Move back to earlier time layer:

E = 1
2

y(t)− ŷ(t)
2

t=1

T

∑δ j = − ∂E
∂z j

§ Output units in time layer t

δ j
o = ( y j (t)− ŷ j (t))g '(z j

o(t))

§ Hidden units in time layer t:

Backpropagate

Hidden Layer

Input Layer

Output Layer

u(t)

ŷ(t)

y(t)1≤ t ≤ T −1

δ ℓ(t +1)
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Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

Hidden Layer

Input Layer

Output Layer

u(1) u(T )

ŷ(1) ŷ(T )

Weight Changes for BPTT

y(1) y(T )

q The units in all time layers share the weights. 
q (weight update)=(sum of corrections of all time layers)

Δwji = ρ δ j (t)xi
t=1

T

∑ (t −1)

u(t)

ŷ(t)

y(t)

wji
out
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in
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Δwji
in = ρ δ j (t)ui
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Drawbacks of Back Propagation Through Time (BPTT)
qAs the time layers extend, (large T), the error backpropagation through time tends 

to vanish.
qThere are a few techniques and network architectures that have been proven to

be effective for coping with the vanishing gradient problem.
qThese include Long-Short Term Memory (LSTM) network, which has been used

extensively.
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A A

Long Short Term Memory network architecture

Forget

Store

Update

Output

Cell State: c

Hidden State: h

qMore control over information transmitted
qDiscard irrelevant information based on new input and the previous state ht-1, Forget
qStore relevant information taken from new input and the previous state: Store and Update
qMaintain an uninterrupted gradient flow : Separate cell states from outputs à Highway

Uninterrupted gradient flow



Reflection
• Strong points of deep neural nets
– Error backpropagation with improved activation functions, e.g. ReLU, and 

control of information flow (LSTM)
– Automatic feature extraction through end-to-end learning, e.g. CNN
– Focused connection and hierarchical structure (CNN)
– Capturing of time series information (RNN)

• Clever, but unsure
– Early stopping for preventing over fitting
– A lot of hacks: Dropout; Momentum term; Randomized weights, Data 

augmentation, etc. 
– Altering convolution and pooling
– The lack of fundamental theory: unaccountable results
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