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Neuron Model

§ McCullock & Pitts, 1943
§ Rosenblatt, 1958: 

Perceptron
§ Widrow & Hoff, 1960: 

Stochastic Grad. Descent

Marvin Minsky’s
XOR counter example

Multi-layer Neural Nets

§ Error Backpropagation
§ Rumelhart & McClelland,

1986; Werbos, 1975
§ Reinforcement Learning, 

Sutton 1984

Deep Learning

§ Convolutional Neural Nets (CNN), 
Fukushima 1980

§ Recurrent Neural Nets, Elmer 1990, 
Jordan 1997.

§ Long Short-Term Memory (LSTM) net, 
Hochreiter & Schmidhuber 1997

§ GPU
§ Successful applications in voice 

recognition, image processing



Outline

• Artificial Neural Network
– Basic neuron model
– Gradient descent
– Nonlinear classification : XOR 

problem
– Multi-layer neural network
– The Error Back Propagation 

Algorithm
– Properties of and tips for 

neural net training
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The Hebbian Rule 
Input ix             out put y  
   fired                fired 
 
 
The i-th synapse iw is reinforced. 

Neuron Model

A Human brain has approximately 14 billion neurons.
- Massively-parallel, distributed processing -
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Artificial Neuron Model
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Weighted sum of inputs: z = wixi
i=1
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∑ Output Function: ŷ = g(z)

g(z)

Supervised Learning



 
 

 

 

 

 

 

 

 

  
 

Synapses 

ŷ
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Prediction Error Method

Supervised Learning



Neural Net Training Based on Gradient Descent

Consider a linear output function for )(ˆ zgy = : 
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 , so that the following mean squared error may be minimized:  
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Applying the gradient descent method yields 

Apply the Gradient Descent Method

JN

wDw

Consider a linear output function for : 

(5)          

 Suppose that N sample data ( ){ }1, ,... 1,...j j j
ny x x j N=  are used for training the weights  

 , so that the following mean squared error may be minimized:  

(6)  

Applying the gradient descent method yields 

Training 
Data

Find weights using the training data, so that the squared error may 
be minimum.
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This method requires to store the gradient   for all the sample data

before making one correction to the weight. It is a type of batch processing. 
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before making one correction to the weight. It is a type of batch processing. 

Taking partial derivative of the squared error:

Learning rate We assume a linear 
output function: Consider a linear output function for : 
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 Suppose that N sample data  are used for training the weights  

 , so that the following mean squared error may be minimized:  

(6)  

Applying the gradient descent method yields 

Therefore, the weight change is given by

Neural Net Training Based on Gradient Descent
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Δwi ∝ (Prediction Error) x (Input)

This resembles Recursive Least Squares, Kalman Filter, etc.
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Consider a linear output function for : 

(5)         å
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 Suppose that N sample data  are used for training the weights  

 , so that the following mean squared error may be minimized:  

(6)  

Applying the gradient descent method yields 

Drawbacks of this algorithm are:
q Until you present all the training data, you cannot make any correction 

to the weights.
q As the size of the training data increases, a large memory space is 

required to store the results.

Neural Net Training Based on Gradient Descent
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Training Data

The Delta Method: An alternative to the global gradient descent



An alternative method is to execute updating the weight  every time the training data 
is presented. 
 
(8) [ ] ][][ kxkkw ii rd=D     for the k-th presentation 

(9) where ][][][)( kxkwkyk llå-=d  
 
 Correct output for the 

training data presented 
at the -th time 

Predicted output based on the 
weights for the training data 
presented at the -th time 

 

   epoch 1    epoch 2    epoch 3    epoch 4    epoch p 

N presentations 
 

The Delta Method: An alternative to the global gradient descent
Make a quick correction to the 
weights for each presentation 
of the individual training data.

N training data are randomly presented to the 
neural net, and make weight changes N times. 
Repeat this sequence of N presentations, called 
an epoch, many times until it converges.
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The Widrow-Hoff Algorithm: Stochastic Gradient Descent

An alternative method is to execute updating the weight  every time the training data 
is presented. 
 
(8) [ ] ][][ kxkkw ii rd=D     for the k-th presentation 

(9) where ][][][)( kxkwkyk llå-=d  
 
 Correct output for the 

training data presented 
at the -th time 

Predicted output based on the 
weights for the training data 
presented at the -th time 

• Compared to the full Gradient Descent method 
(batch processing), the Widrow-Hoff algorithm 
may be erratic in each step of weight correction, 
since it evaluates the gradient based on only one 
data point (one example);

• But, no need to store each presentation result; 
much quicker in making corrections, particularly 
for a large training data set. à This property has 
led to Massively Parallel and Distributed 
Processing, an important feature of Neural Nets.

Question: Does it converge? Where to converge?
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Convergence Analysis of Stochastic Gradient Descent
For linear output functions, Convergence Conditions have been obtained.

• With a constant learning rate r , the 
learning does not converge.

• The learning rate r[k] must be varied.
• All the weights converge to their optimal 

values with probability 1, when the 
following conditions are met

Example:

ρ[k] = c
k

This meets 
the three 
conditions.

# of iteration

r[k] 
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(Robbins and Monroe, 1951)



Limitation to Rosenblatt’s Perceptron and the birth of Multi-Layer Neural Network



Linearly separable.
1x

2x

Not linearly separable.
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The Exclusive OR Problem
 Can a single neural unit (perceptron) with 

weights  produce the XOR 
truth table? 

 No, it cannot 

(15) 32211 wxwxwz ++=    
Set z=0, then 1 1 2 2 30 w x w x w= + +  represents a straight line in the  plane. 
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(15)    
Set z=0, then  represents a straight line in the  plane. 

 

(16)  Class 0 and class 1 cannot be 
separated by a straight line. … 
Not linearly separable. 

(15)    
Set z=0, then  represents a straight line in the 1 2x x-  plane. 

 

(16)  Class 0 and class 1 cannot be 
separated by a straight line. … 
Not linearly separable. 
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This is apparently a 
linear function: 
Linearly Separable.

Consider a nonlinear function 

replace 1x 2x by a new variable 3x  

Hidden Unit
Not directly visible from output
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Multi-Layer Neural Network

Input 
Data

Output 
Data

Unit 1

Unit j

Unit 4

Unit 5

Unit 2

Unit 3

Layer 0

Layer 1
Layer 2

Layer m
Layer M

Hidden Layers
Input
Layer

Output
Layer

Layer 0

Layer 1 Layer m
Layer m+1

Unit i

Unit i Unit j

Layer m

wji
[m] 

xi
[m] 

zj g(zj)
yj

[m] = xj
[m+1] 

wji
[m] 

xi
[m] 

yj
[m] = xj

[m+1] 

Input to a unit in layer m
from unit i

Weight of the connection from 
unit i to unit j in layer m.

Layer 0

Layer 1
Layer 2

Layer m
Layer M

Hidden Layers
Input
Layer

Output
Layer

Output from unit j in layer m, 
which is the same as the input to 
a unit in layer (m+1)

Co
m

pa
ris

on

q The above example of XOR 
manifested the need for hidden units 
for solving a classification problem 
that is not linearly separable.

q The hidden unit generates an 
internal representation of the input 
pattern, providing the output unit 
with the critical information key to 
the correct classification.

q Generalizing this hidden unit’s role, 
the architecture of Multi-Layer 
Neural Net was developed.

(Node)
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Layer 0

Layer 1 Layer m
Layer M

( )y tˆ( | )y t qz
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Unit i Unit j

Layer m

wji
[m] 

xi
[m] 

zj g(zj)
yj

[m] = xj
[m+1] 

Activation 
Function

qA 3-layer neural network with the sigmoid output function satisfies the Function Approximation 
Theorem, George Cybenko in 1989, Universal Approximator.

q It has been extended to deep neural nets with other output functions.

(Output Function)



Layer 0

Layer 1
Layer 2

Layer m
Layer M

Hidden Layers
Input
Layer

Output
Layer

Multi-Layer Neural Network

The Error Back Propagation Algorithm

How do we train the multi-layer perceptron, given training data 
presented sequentially?

Input 
Data

Output 
Data
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m
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z2 g2 z5 g5

z4 g4

z3 g3x2 

x4 

x3 

x2 

x1 

w21

w32

w42

w53

w54

Example

Forward Path Computation
z2 = w21x1
z3 = w32x2
z4 = w42x2
z5 = w53x3 + w54x4

x2 = g2 (z2 )
x3 = g3(z3)
x4 = g4 (z4 )
y5 = g5(z5) = ŷ

Before formulating a general algorithm, let’s work out a simple example.

(Loss Function)



Example
Δwji = −ρ ∂E

∂wji
Gradient Descent:

y5 = g5(z5) = ŷ

z5 = w53x3 + w54x4

z2 g2 z5 g5

z4 g4

z3 g3x2 

x4 

x3 

x2 

x1 

w21

w32

w42

w53

w54

E = 1
2
( ŷ − y)2

Chain Rule
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z4 g4

z3 g3x2 
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w32
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z5 = w53x3 + w54x4

z3 = w32x2 x3 = g3(z3)

Similarly,
Recall

−δ5 =
∂E
∂z5

= ∂E
∂y5

dy5
dz5



z2 g2 z5 g5

z4 g4

z3 g3x2 

x4 

x3 

x2 

x1 

w21

w32

w42

w53

w54

z5 = w53x3 + w54x4

z2 = w21x1

z3 = w32x2
z4 = w42x2

∂x2
∂w21



δ5 = ( y − ŷ)g '5(z5)
δ 4 = δ5w54g '4 (z4 )
δ3 = δ5w53g '3(z3)
δ 2 = (δ3w32 +δ 4w42 )g '2 (z2 )

Δw53 = ρδ5x3
Δw54 = ρδ5x4
Δw32 = ρδ3x2
Δw42 = ρδ 4x2

Recursive Computation
Computation of delta’s from the final layer to the first layer

Error 
Backpropagation

Changes 
to weights
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Predicted 
Output

Correct Outputŷ y

Gradient Descent  Δw = −ρ ∂E
∂w

Learning Rate

The Final Layer M

Final Layer M
Delta can be computed directly from 
the correct output and the predicted 
output.
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d is backpropagated from those in 
layer (m+1) to layer m;

The computation is similar to the 
forward computation

Weighted sum

Hidden Units
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Forward Computation

Backward Computation

The Error Backpropagation Algorithm
[Wobas 1974, 1994] [Rumelhart, Hinton, & Williams,1986]



Training of Multi-Layer Neural Nets with Error Backpropagation

1. Sigmoid output function

2. Smoothing of convergence process

3. Local minima

4. Mini-batch

5. Hyperparameters



Output Function: g(z)

Unit j

Layer m

wji
[m] 

xi
[m] 

zj g(zj)
yj

[m] = xj
[m+1] 

Sigmoid Function

1. Sigmoid output function



g’=g(1-g)

These properties contribute to stabilizing the learning process.



A typical failure scenario of Neural Net training is “zig-zag” weight changes. 
This results in a very slow convergence or even a divergence.
Suppose that the squared error function has a deep ravine.
The gradient direction bounces back and forth between the two steep walls, as 
shown below.

Slow Convergence

Divergence

2. Smoothing of convergence process

Space of weights   
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Remedy: The zig-zag trajectory can be smoothed out by adding a 
momentum term to the weight change formula.

Adding a momentum term

Space of weights



3. Local Minima

Convex Optimization Concave Optimization
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Weights Weights

Training of a multi-layer neural net is typically a 

concave optimization problem.

There are multiple local minima in the weight space.

Remedy:  Train a neural net multiple times starting 

with diverse initial conditions1, compare the total 

squared errors, and pick the one that is the smallest 

in squared error.

1   Randomize initial values of the 

weights, and conduct the 

training repeatedly starting at 

different initial values of the 

weights. Each may end up with a 

different local minimum.



4. Mini-Batch Training

Layer 0

Layer 1 Layer m
Layer M

( )y tˆ( | )y t qz
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qThe classical Widrow-Hoff stochastic gradient descent algorithm makes corrections 
to node weights for each single data point presented to the neural network.

qThis has pros and cons:
§ Pros: not much memory space is required; good for getting rid of local minima
§ Cons: induces more noise in error calculations

q An alternative is Mini-Batch training, where a small set of data points are presented 
and the gradient is computed as the average of the gradients obtained from the 
small set of data points.

Mini-Batch Size: 8

Average 
gradientEBP

In practice, mini-batch size of 32 is 
commonly used.



5. Hyperparameters

qNeural net training performance depends on the structure and parameters that 
must be specified prior to training.

qThese parameters differ from node weights, wji’s, and are called Hyperparameters.

Layer 0

Layer 1 Layer m
Layer M

( )y tˆ( | )y t qz

z
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z

z

z
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z

z

z

z

z

z
§ Learning rate r.
§ The number of hidden layers
§ The number of units in each layer
§ Mini-batch size
§ Epoch size
§ Output function



Summary
• Artificial Neural Network
– Basic neural network model
– Widrow-Hoff stochastic gradient descent method
– Nonlinear classification : XOR problem
– Multi-layer neural net 
– The Error Back Propagation Algorithm
– Sigmoid output function and stability
– Momentum term for smoothing
– Local minima
– Mini-batch training
– Hyperparameters 


