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Example 1. Finite Impulse Response (FIR) Model
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Example 2. Nonlinear function

y(t)=bx, + bzxf +bx,x, + b4e_3

(D:

u(t—1)

u(t — m)

X

c SRle

c mmxl

Parameters are linearly
involved, if we use the
following regressor:

Dependent Variable y

Independent Variable u
X, b,
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Recap Least Squares Estimate (LSE)

For finding parameters from data, y(¢)and ()

Prediction — Error Formalism

. Real y(t) .
S
o(f) — ystem I?rediction Error
y(t|6)—y(t)
, Model ,
0 | A
(t]0)

Mean Squared Error:
1 &,
v, (0)= WZ(W 10)— ¥(1))°
=1

Least Squares Estimate (LSE) provides the parameter
vector that minimizes the above Mean Squared Error:

0" = arg min/, (6)

Problem:

Given a set of data
(1 .,(1)

¢,y

2) (2
(P( )’y( )
QD(N),y(N)

Find parameter vector &

A

Updated LSE model

f :

New Data

@t




Recap

The Recursive Least Squares Algorithm
0" ()= 6" (1= 1)+ K,[ y(t) = (2|0 (¢ = 1))]
F_ (1)

1+ " (1) B_p(1)

_P_Loe’ ()P
1+ () P_p(1)

where Kt =

P=P

4 t—1

Initial conditions:
éLS(O) = éo = Arbitrary, e.g. éo =0

£y = Positive Definite Matrix, e.g. B, = /

Carl Friedrich Gauss discovered the Recursive Least
Squares Algorithm in 1821.

t=1,2,

Updated LSE model

f

New Data

@t

0L (t—1)

- Previous model

Identity Matrix




2.3 Physical Meaning of Matrix P

6" ()=0" (t—1)+ K [ y(t)— $(¢ 0" (t—1))]

_Baee OF, - x —_ B.00)
1+ 9" (1) P_p(7) " 1+e" (OP_0@)

P=P

¢ t—1

The optimal gain K, can be written as K, =Pp(t)

Proof

Post-multiply @(¢) to (14) and then multiply 1+ ¢ (£)P_ ()

(1+¢" (N P_o() Pp(t) = (1+ 0" (DP(D) F_p(1) — B_, (D@D E_ (1)
— Pt_lgo(t)

P_, (1)
1+o" (1) P_ (1)

}%D(t) = = K,  This agrees with the optimal gain K,



Error Correction
AO=6"(1)-0" (t—1)= K [ y(t)— $(t 0" (t—1))]
S AO=P-(1) e(t)

(Parameter Estimation Correction)
= P, x (Regressor) x (Prediction Error)

We can find a similar expression repeatedly in
e Kalman filter
* Neuron model
* Error Backpropagation in multi-layer neural nets

Physical Sense of P,?

~1
P= {Zco(z‘)qﬂm}
i=1

or  PT'=) ()’ (i)
i=1

| Real
System
/—— Gain
| Model
0
/
Gain |

\‘k
e




m-dim
Plot regressor data in the m-dimensional vector space. o(i)
@(1),@(2), """ 9¢(t) ° )
To characterize how the regressor data (input) are ° vy ({’1
distributed, consider a unit vector v and quantify the total . ° o
squared strength of @(1),p(2),----- ,@(t) inthe direction
of vector v. ’ o
t t .
D@ ()= v e (i)-v
= = m-dim 721

4
=v' Y o(¢' (i)-v=v'P'v Quadratic form of P,
i=1

Find the max. (min.) of the total squared signal strength.

Largest signal

° VTI)t—lv
° {Dl

- Find the direction of unit vector v that maximizes the

. : _ . 2 o
qguadratic function vTPt Ly subject to|v| =1.

This is an eigenvalue problem. ’




Quick Math Review: Eigenvalues

The maximization problem can be solved by using Lagrange multiplier A.
We first define an extended cost functional including the constraint:

t
L= VTZ(pquv —A(v'v-1)
i=1 m-dim

The max. direction of unit vector v is:
v=argmax L(v,A)
A%

Necessary conditions:

D, ¢
Eigen

4 4
oL _o 2) pp'v—2Av=0 D pp'v=2v

v i=1 i=1

t
This implies that v is an eigenvector of matrix ZQD(i)(pT(i)
i=1




Math Review

Contoursof f(x,y)=d

The Lagrange Multiplier Method 4
Maximize (minimize) f(x,y)
Differentiable
Subject to g(x,y)=0
At a local maximum point 4, the gradient of /(x, y)
is aligned with the gradient of g(x, )
(o) [
ox ox
= A i o e
af ag The necessary condition for (x,y) is @ maximum (minimum)
55 E™ point of f(x,)) subjectto g(x,y)=0 is:
. 9V ) . 9V JL
= _0
or V. f(x,y)=A-V _ g(x,y)=0 dx
for some A. B_L —0
dy
Define Lagrange Function: oL

JZO - g(xay):()
L(X,y,ﬂ,): f(xay)_ﬂ"g(xay)



Quick Math Review: Eigenvalues

The maximization problem can be solved by using Lagrange multiplier A.
We first define an extended cost functional including the constraint:

f(x,J/)\ t /g(x,y)zo

L= vTZquDTv —A(v'v-1) m-dim ? 1

i=1
The max. direction of unit vector v is:

Eigen

v=argmax L(v,A)

Necessary conditions:

4 4
oL _o 2) pp'v—2Av=0 D pp'v=2v

v i=1 i=1

t
This implies that v is an eigenvector of matrix ZQD(i)(pT(i)
i=1




Error Correction m-dim

AO=6"(1)—0" (1—1)= K[ y(1)— $(t|6" (1 —1))]
S AO=P-(1) e(t)

t
Assume Z¢(i)¢T(i) is non-singular.
=1

t (2 0
P'=Y o)e" (i)=T T’
i=1 T:( v
0 A !
\ J
( i , A ( i
» 2, 2,
{
(quwf’@] =(7")™ T =T
=1 1
0 — 0
lm

TT

-] Max. A
Min. 1/
° ?l

Eigen vectors are in
the same directions.
Eigenvalues become
reciprocal.

Orthonormal

11



Error Correction A= P -¢(t)-e(?)

Not many data

have been
obtained in this
direction. ‘
@
P, ?
?
Not strong signal strength in this direction:
Not familiar.

Rely more on new data in this direction

1
PtQD*Z/I—(P* ‘AQ‘ is large.

min

Suppose that a new sample @* (test point) is
observed, which is on the line of v, associated
with the largest eigenvalue of matrix zgo(i)goT(i)
In the direction of v;,, we have already obtained a
lot of data; we already know well in this direction.

> o
No need to make a large correction to A@
1 1
‘P(D*‘OC— P¢*:—¢*
t
/lmaX t /lmax
‘AQ‘ is small.

In summary, the correction gain K, = Po(¢) is
attenuated depending on how much the system
already know in each direction:

Less known -2 large gain

Plenty of data = small gain



Quick Math Review: Positive-Definiteness

Consider a real square matrix 4 R"™"

mx1
xl Ax >0 Forall x € R =) \/atrix A is Positive-Definite.

Other than x #0
If Ais givenby 4= Z(p(i)q)T(i) , then 4 is real, symmetric, and
1) A is at least positive semi-definite with eigenvalues:

A=A A=A =420

vy  Corresponding eigen vectors

\ % 1%

1 2 m
2) Acanbed dto [ W )
) Can pe aecompose 0 2’1 O Vl
A:( V] cee Vm ) '.. .
/ I 0 2 KV”T” )

Orthogonal Matrix
T = SKme TT — T—l

Eigen Decomposition

Check property 1)
Consider Quadratic Form:

xTszxTZquoTx
=X (9" x)* =20

This implies that matrix A
is positive semi-definite.



Persistently Exciting Input / Regressor

t
m-dimensional regressor space If VTZ(p(i)q)T(i) v=0
i=1
t If A . >0 : :
The ellipsoid associated | @u min ~ for atpartlcular v,
with ! then 4 E(goT(i) v)* =0 This implies
-1 AT — : : : =
P =2 9" () P =Y o)’ (i) <
=1 i=1 T/ o .
\ Arnin y) spans the entire ¢ ()v=0, lsVist
™ m-dim space. All the regressor The ellipsoid
. pomjcs are o collapses to the
0, co.nfmed within ‘} hyperplane.
this hyperplane. |9, t
. T ,.
2 (D" (i)
@, J v i=1
D o)’ (i) is non-singular. Is singular.
i=1
The data must cover the entire m-dimensional regressor space. (p;
Persistently Exciting (PE) 14




Convergence Properties of the Recursive Formula

Incremental change to P, Analysis of Convergence Properties:

T .
AP=P_P :_Pz—l PP (), <0 0“°(1) > converge
L+  (OP_0(0) |
Negative semi-definite

Recursive Least Squares (RLS) with initial

conditions: X
Exercise: Show why it is negative semi-definite. 6(0) = Arbitrary

P = Positive definite

P<P i | A
, = £ Non-increasing Converges in the sense 11m‘9(t)—9(t—1)‘ =0

t—>o0
Initial P, keeps Goodwin and Sin, Chapter 3
“q)m age (pm“ . . ~
choidl';'ons shrinking Caveat! This does not mean that 6%5()
X unless ¢(1)=0. converges to the true value 6_ .
= - — : It depends on input (regressor) (%)
2 ?,
65 > 6
(01 (01 ( ) {300 true

Persistent Excitation conditions required.



2.5 Estimation of Time-Varying Parameters

| Road conditions Plant conditions, such as road
may vary over time. conditions, may vary over time.

How can a control system
estimate varying parameters in

! . realtime?

Smart traction + suspension control g

Time Suppose that the system
keeps measuring regressors
() and output variables. The
Indirect Adaptive Control parameters should be
Recent|!  estimated based on recent

] Old data gg% Tim'e past data rather than older

| Parameter | data.
k o(1) Estimation | |,y This parameter estimation

problem is important for the
Feedback

o(1)| Real time data

Adaptation | 6
Law

T
0Q
Weight

- . » Plant ——— Low oS system to adapt to the

Control ) A\ _ _
) ¢ { varying environment

C
\ ¢ conditions: Adaptive control.
16




o(t)|

»(2)

Recursive Least Squares with Exponential Forgetting Factor

Real time data

ec
past

Old data data

Time

Weight

1¢ .
The original squared error: Vt(9)=;2(gf(i)—y(l |49})2
i=1

(i)

Weighted squared error

J (0)= e*()+ae’(t—1)+--+a' e’ (1)
J(0)= iat_iez(i)
i=1

o = Exponential Forgetting Factor; O <o <1

The Least Squares Estimate:

é(t) = arg mein J (0)

This least square estimate and its recursive version can be
obtained in the same way as the previous case.

dJ,
— Lt =0
do

and apply the Matrix Inversion Lemma.

0.8

0.64
0.51
0.41
0.33
0.26
0.21



Recursive Least Squares with Exponential Forgetting Factor

6(t)=6(t—1)+ K [ y(t)— $(t|6(¢ —1))]
I)t—l (D(t) = 1,2,...

where K = -
o+ (t)F_e(7)
1 P_ oo’ (t)P ‘
P=—|P_ - f—1¢(T)¢ ()“} O<a<l |
o a+¢" ()P_p(1) £ 4 ST
Data: P =) ¢(i)e’ (i)
The only difference is that 1 in the denominator is
replaced by a and that the updated P matrix is divided ' For new data: Pt(P* =0
by .
Caveat!

When the system enters a “steady-state”, producing the same @(f),J/(f)
for a long time, the total squared signal strength keeps increasing in

that direction of the regressor vector , N\l
— P= (Ego(z)goT(z)) becomes very thin.



Failure Scenarios

_1|, B e (OF,
o o+ ()P_ o)

When a car is running through a boring country side,
almost constant data will be obtained, resulting in

P_p*=0.
However, the reciprocal of forgetting factor,
1
—>1
o

is multiplied repeatedly.

P o*()p* ()P 1
p=tlp tn® 007 W) 1p
« a+e* (OFE_p*(@) | &

1
P=—F — !
(=0 T Blows up!

I<a<l

Driving along a cornfield

Boring, no change in sensor readings

P
t -1 ~ T ,.
.. )| pata: PL=> ()" ()

. * ~
For new data: P_ ¢*=0

19



Example

P-Matrix eigenvalues

Recursive Least Squares
with Forgetting Factor

/ Blows up

T
Pt — l Pt—l . Pt—l ¢§t)¢ (t)Pt—l :|
(04 o+ @ (1) f;_lgo(t)
1 O
P = :
"o 1
1
gD(t) } | Convergesto 0
’ 0 —>
o =0.85 o 1 2 3 4 5 & 7 8 9 10

——lamda-1 ——Llamda-2

20



Remedy

M Covariance Re-setting
[ Occasionally, P is re-set to a large positive-definite matrix, such as the identity matrix:

P=xl, 0<Kk<e,@t=T,2T,3T,......
 This covariance re-setting revitalizes the RLS algorithm.

Covariance Covariance

21



Example

Covariance Re-setting

T
})t — l|:])t—1 _ E—l ¢§t)¢ (t)})t—l
« o+ (O)F_p?)
T=11
1 O
P — ) k — 091,2,3, ...... 2
kT [ 0 1 ]
1 P-Matrix eigenvalues
|
[)= ,
o(1) ( 0 ) |

0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

o =0.85
e=—lamda-1 e——lamda-2

22



Remaining Topics

JOrthogonal Projection

AMulti-Output, Weighted Least Squares Estimate

See the Lecture Notes Chapter 2



