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Regression Analysis
A statistical method for examining 
relationship between multiple variables. 
In particular, it is to analyze the 
influence of  independent variables 
upon dependent variables.
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u : Independent Variable
y : Dependent Variable

Parameters to estimate

y = bu + c ⋅1 y = bu1 + c ⋅u2

Homogeneous form

A special case where u2 = 1 2



Linear Regression

In general, consider a linear homogeneous equation

y = b1u1 + b2u2 +!+ bmum
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y = θTϕ (=ϕTθ )

Problem:
Given a set of data

ϕ (1) , y(1)

ϕ (2) , y(2)

!

ϕ (N ) , y(N )

Find parameter vector q

where

:  Parameter vector

: Regressor

:  Linear Regression

Dependent variable y is given as an inner product between q and j :

(1)
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Remark
Eq. (1) looks a static relationship between input and 
output, but in fact it represents more general cases.

Example 1: Consider a discrete-time dynamical system:

y(t) = g1u(t −1)+ g2u(t − 2)+!+ gmu(t −m)

Linear 
Time-Invariant 

System

y(t) = g(τ )u(t −τ )dτ
0

∞
∫

y(t) = gku(t − k)
k=0

∞
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Truncation

g2
g1

gk

g1

g2

u(t − 2)u(t − k)

gk

k
t

u(t)
y(t)

Impulse Responsewhere

y(t)

u(t −1)

Time

This system is called Finite Impulse Response (FIR) 
System y = θTϕ
”Given time-series input-output data, find the 
parameter values”

à This is a typical System Identification Problem
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Example 2: Consider a nonlinear algebraic system:

Linear Regressions

y(t) = b1x1 + b2x1
3 + b3x1x2 + b4e

−3x1

θ =
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b3
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where

The nonlinear system can be represented as a linear regression model.

In PS #1, you will find other examples of nonlinear and/or dynamic systems, where 
unknown parameters are involved linearly in the governing equation. Obtaining the 
unknown parameters from data can be treated as a linear regression problem.
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Least Squares Estimate (LSE)
For finding parameters from data,         and ϕ(t)y(t)

Real
System

Model
q

Prediction – Error Formalism

Prediction Error

y(t)

ŷ(t |θ ) Prediction based on assumed q

ŷ(t |θ )− y(t)ϕ(t)

Mean Squared Error:

VN (θ ) =
1
N

( ŷ(t |θ )− y(t)
t=1

N

∑ )2

Least Squares Estimate (LSE) provides the parameter vector that minimizes 
the above Mean Squared Error:

θ̂ LS = argmin
θ
VN (θ )

Argument of function               that minimizes the value of the function.VN (θ ) 6



Prediction Error Formalism 
Broadly used in estimation, system identification, and machine learning
Solution

VN (θ ) =
1
N

( ŷ(t |θ )− y(t)
t=1

N

∑ )2

The necessary conditions for VN to take a minimum:
dVN (θ )
dθ

= 0 : Differentiation of a scalar function VN with respect to vector q

VN (θ ) =
1
N

Xt
2

t=1

N

∑ Xt = ŷ(t |θ )− y(t)where∂VN (θ )
∂θi

= 1
N

dXt
2

dXt

∂Xt
∂θit=1

N

∑ = 2
N

Xt
∂ ŷ(t |θ )
∂θit=1

N

∑

= 2
N

Xtϕi(t) : ŷ(t |θ ) = θ1ϕ1 +!+θiϕi +!+θmϕm
t=1

N

∑

Repeating this 
partial derivative 
for all i’s yields:
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t=1

N

∑
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( ŷ(t |θ )− y(t))ϕ(t) = 0
t=1

N

∑

Least Squares Estimate, Solution continued

ŷ(t |θ ) = θT ⋅ϕ(t) =ϕT (t) ⋅θ

ϕT (t) ⋅θ

[ϕT (t) ⋅θ]ϕ(t) =
t=1

N

∑ y(t) ⋅ϕ(t)
t=1

N

∑

ϕ(t)ϕT (t)
t=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
θ = y(t) ⋅ϕ(t)

t=1

N

∑
This is called Normal Equation.

Note                           is a m by m matrix. Assuming 
that it is non-singular,

θ̂ LS = ϕ(t)ϕT (t)
t=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

y(t) ⋅ϕ(t)
t=1

N

∑

Remark 1
The regressor data                                           must 
contain a variety of vectors, spanning all the 
directions in the  m-dimensional space.

ϕ1 ϕ2

ϕmϕ(t)

ϕ(2)ϕ(N )

ϕ(1)

ϕ(1),ϕ(2),!,ϕ(N )

Remark 2
When the m by m matrix is non-singular, then the 
squared error function VN is convex, possessing a 
unique global minimum.

VN

θ1 θm

Is a scalar quantity. You can move it anywhere.

Recall

ϕ(t)ϕT (t)∑

Optimal 8

VN (θ ) =
1
N

(ϕ(t)Tθ − y(t)
t=1

N

∑ )2



2.2 The Recursive Least Squares Algorithm

ϕ(t)
y(t)

§ Suppose that data are observed in sequence, like Carl Friedrich Gauss 
did in his planetary observation every night. 

§ Rather than waiting until all the data are obtained, you want to obtain 
the optimal estimate based on the data you have obtained so far.

time
ϕ(t −1)
y(t −1)

ϕ(t − 2)
y(t − 2)

ϕ(1)
y(1)

θ̂(t −1) θ̂(t)

……………

tt-1t-2

The optimal estimate based on the 
data up to and including time t-1.

Now a new observation 
is obtained at time t, 
how can we update 

by using                                    
and          ? 

y(t)ϕ(t)If the optimal estimate           depends only on              and new data         ,         ,  we can forget old data.

Find a recursive formula:

θ̂(t) θ̂(t −1)

θ̂(t −1)
y(t)ϕ(t)

θ̂ LS (t) = θ̂ LS (t −1)+ [Correction based on ϕ(t), y(t)] 9

New Data @
y

j

t-2
t-1

t§ The Least Squares Estimate we have 
obtained is an off-line batch processing 
algorithm after collecting all data.

θ̂ LS = ϕ(t)ϕT (t)
t=1

N

∑
⎡

⎣
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⎢

⎤

⎦
⎥
⎥

−1

y(t) ⋅ϕ(t)
t=1

N

∑



Recursive Least Squares (Continued)
θ̂ LS (t) = θ̂ LS (t −1)+ [Correction based on ϕ(t), y(t)]

This must be the same as the optimal solution θ̂ LS = ϕ(i)ϕT (i)
i=1

t

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

y(i) ⋅ϕ(i)
i=1

t

∑

Pt = ϕ(i)ϕT (i)
i=1

t

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

Bt = y(i) ⋅ϕ(i)
i=1

t

∑

Let us derive the recursive formula to update the estimate with new observation and y(t)ϕ(t)

Step 1

Define and So that θ̂ LS = PtBt

Split each of these into the new observation and the one from the previous step.

Bt = y(i) ⋅ϕ(i)
i=1

t−1

∑ + y(t) ⋅ϕ(t) = Bt−1 + y(t) ⋅ϕ(t)

Pt
−1 = ϕ(i)ϕT (i)

i=1

t

∑ = ϕ(i)ϕT (i)
i=1

t−1

∑ +ϕ(t)ϕT (t) = Pt−1
−1 +ϕ(t)ϕT (t)

Update of Bt is straightforward, 
but Pt is different. The inverse 
of the m by mmatrix must be 
computed. Do we need to take 
matrix inversion in every 
recursive step of computation?

(12) 10

We assume that enough data are initially available so that the matrix                     is nonsingular. ϕ(i)ϕT (i)
i=1

t

∑



Step 2.  The Matrix Inversion Lemma
Can we compute Pt recursively without taking matrix inversion? Yes, we can.

Pre-multiply Pt and post-multiply Pt-1 to eq.(12):
PtPt

−1Pt−1 = PtPt−1
−1Pt−1 + Ptϕ(t)ϕ

T (t)Pt−1
Further post-multiply ϕ(t)

Pt−1ϕ(t) = Ptϕ(t)+ Ptϕ(t)ϕ
T (t)Pt−1ϕ(t) = Ptϕ(t)(1+ϕ

T (t)Pt−1ϕ(t))

Note that                                   is a scalar quantity. Divide both sides by 1+ϕT (t)Pt−1ϕ(t) 1+ϕT (t)Pt−1ϕ(t) ≠ 0

Ptϕ(t) =
Pt−1ϕ(t)

1+ϕT (t)Pt−1ϕ(t)
Post-multiplying ϕT (t)Pt−1 to left-hand side and using (13) yield

(13)

Ptϕ(t)ϕ
T (t)Pt−1 = Pt−1 − Pt

∴ Pt = Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

The right-had side is computed with Pt-1 and          alone.

the inverse of a m by m matrix is computed without taking matrix inversion.

(14)

ϕ(t)

Pt = ϕ(i)ϕT (i)
i=1

t

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

11

Pt
−1 = Pt−1

−1 +ϕ(t)ϕT (t)



Pt = Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

Division is only with a scalar quantity. 
Much faster to compute than the standard matrix inversion.

This is a special case of the Matrix Inversion Lemma.
Max Woodbury (1950) has extended it to a general case.

General Matrix Inversion Lemma: 
A, B, C, and D are arbitrary matrices with consistent dimensions.

[A+ BCD]−1 = A−1 − A−1B[DA−1B +C−1]−1DA−1

ϕ(t)
Pt−1

ϕT (t)
Pt−1
−1 1

(14)

This agrees with (14).
Check it on your own.
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Step 3 Reduce θ̂ LS = PtBt to a recursive formula

θ̂ LS (t) = θ̂ LS (t −1)+ Kt[ y(t)− ŷ(t |θ̂ LS (t −1))]

We can show that the recursive formula is given by the following form

Prediction Error: Negative feedback
An optimal gain for correcting the estimate

Goal:
1) Show that                        can be written in the above recursive form; and
2) Find the optimal gain .

By definition

From Step 1 and Step 2

θ̂ LS = PtBt
Kt

θ̂ LS (t)− θ̂ LS (t −1) = PtBt − Pt−1Bt−1

= Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

⎛

⎝
⎜

⎞

⎠
⎟ (Bt−1 + y(t) ⋅ϕ(t))− Pt−1Bt−1

= Pt−1yϕ −
Pt−1ϕϕ

T Pt−1
1+ϕT Pt−1ϕ

(Bt−1 + y ⋅ϕ )Pt-1Bt-1 cancels Omitting (t)
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θ̂ LS (t) = θ̂ LS (t −1)+ Kt[ y(t)− ŷ(t |θ̂ LS (t −1))]

θ̂ LS (t)− θ̂ LS (t −1) = Pt−1yϕ −
Pt−1ϕϕ

T Pt−1

1+ϕT Pt−1ϕ
(Bt−1 + y ⋅ϕ )

=
Pt−1yϕ + Pt−1yϕϕ

T Pt−1ϕ − Pt−1ϕϕ
T Pt−1Bt−1 − Pt−1ϕϕ

T Pt−1y ⋅ϕ
1+ϕT Pt−1ϕ

=
Pt−1ϕ

1+ϕT Pt−1ϕ
[ y(t)−ϕT Pt−1Bt−1]

=
Pt−1ϕ(t)

1+ϕT (t)Pt−1ϕ(t)
[ y(t)−ϕT (t)θ̂ LS (t −1)]

Kt =
Pt−1ϕ(t)

1+ϕT (t)Pt−1ϕ(t)

Pt = Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

Scalar y can be moved

θ̂ LS (t −1)

We have obtained the Recursive Least Squares Algorithm

where

Prediction error

Factoring out Pt−1ϕ
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θ̂ LS (t) = θ̂ LS (t −1)+ Kt[ y(t)− ŷ(t |θ̂ LS (t −1))]

Kt =
Pt−1ϕ(t)

1+ϕT (t)Pt−1ϕ(t)

Pt = Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

The Recursive Least Squares Algorithm

where
t = 1,2,!

Initial conditions:

θ̂ LS (0) = θ̂0 =

P0 =

θ̂0 = 0

P0 = I

Arbitrary,        e.g.

Positive Definite Matrix, e.g. Identity Matrix

Carl Friedrich Gauss discovered the Recursive Least 
Squares Algorithm in 1821.
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