
2.160 Identification, Estimation, and Learning

Lecture 20

Part 4 Machine Learning and Nonlinear System Modeling

Neural Networks and
Error Backpropagation

H. Harry Asada
Department of Mechanical Engineering

MIT
1

2

Impact &
Social Interest

1940 50 60 70 80 90 2000 10 20

Neuron Model

§ McCullock & Pitts, 1943
§ Rosenblatt, 1958:

Perceptron
§ Widrow & Hoff, 1960:

Stochastic Grad. Descent

Marvin Minsky’s
XOR counter example

Multi-layer Neural Nets

§ Error Backpropagation
§ Rumelhart & McClelland,

1986; Werbos, 1975
§ Reinforcement Learning,

Sutton 1984

Deep Learning

§ Convolutional Neural Nets (CNN),
Fukushima 1980

§ Recurrent Neural Nets, Elmer 1990,
Jordan 1997.

§ Long Short-Term Memory (LSTM) net,
Hochreiter & Schmidhuber 1997

§ GPU
§ Successful applications in voice

recognition, image processing

Outline

• Artificial Neural Network
– Basic neuron model
– Gradient descent
– Nonlinear classification : XOR

problem
– Multi-layer neural network
– The Error Back Propagation

Algorithm
– Properties of and tips for

neural net training

The Hebbian Rule

Input out put

 fired fired

Synapses

3

The Hebbian Rule
Input ix out put y
 fired fired

The i-th synapse iw is reinforced.

Neuron Model

A Human brain has approximately 14 billion neurons.
- Massively-parallel, distributed processing -

The Hebbian Rule

Input out put

 fired fired

Synapses

g y

x1

xi

x2

xn Donald Hebb, 1949

Artificial Neuron Model

Synapses

ŷ

+ _

Weighted sum of inputs: z = wixi
i=1

n

∑ Output Function: ŷ = g(z)

g(z)

Supervised Learning

Synapses

ŷ

+ _

Input Data Output Data

Feature 1x

2x
Feature

Class 1

Class 2

Classification:
Discrete output

Input x

Ou
tp

ut
 y Regression:

Continuous output

g

Prediction Error Method

Supervised Learning

Neural Net Training Based on Gradient Descent

Consider a linear output function for)(ˆ zgy = :

(5) å
=

=
n

i
ii xwy

1

ˆ

 Suppose that N sample data (){ }1, ,... 1,...j j j
ny x x j N= are used for training the weights

 , so that the following mean squared error may be minimized:

(6)

Applying the gradient descent method yields

Apply the Gradient Descent Method

JN

wDw

Consider a linear output function for :

(5)

 Suppose that N sample data (){ }1, ,... 1,...j j j
ny x x j N= are used for training the weights

 , so that the following mean squared error may be minimized:

(6)

Applying the gradient descent method yields

Training
Data

Find weights using the training data, so that the squared error may
be minimum.

The Hebbian Rule

Input out put

 fired fired

Synapses

g

x1

xi

x2

xn

ŷ
y

+ _

JN

(7)
i

jN

j

jj
Nwi w

yyy
N

Jgradw
i ¶

¶
--=×-=D å

=

ˆ
)ˆ(2

1

rr

This method requires to store the gradient for all the sample data

before making one correction to the weight. It is a type of batch processing.

z

Ou
tp

ut
 yWeighted sum of inputs: z = wixi
i=1

n

∑

JN = 1
N

(ŷ j − y j)2
j=1

N

∑

(7)
i

jN

j

jj
Nwi w

yyy
N

Jgradw
i ¶

¶
--=×-=D å

=

ˆ
)ˆ(2

1

rr

This method requires to store the gradient ()
i

j
jj

w
yyy
¶
¶

-
ˆˆ for all the sample data

before making one correction to the weight. It is a type of batch processing.

Taking partial derivative of the squared error:

Learning rate We assume a linear
output function: Consider a linear output function for :

(5) å
=

=
n

i
ii xwy

1

ˆ

 Suppose that N sample data are used for training the weights

 , so that the following mean squared error may be minimized:

(6)

Applying the gradient descent method yields

Therefore, the weight change is given by

Neural Net Training Based on Gradient Descent

JN = 1
N

(ŷ j − y j)2
j=1

N

∑

Δwi = −ρ 2
N

(ŷ j − y j)xi
j

j=1

N

∑

Δwi ∝ (Prediction Error) x (Input)

This resembles Recursive Least Squares, Kalman Filter, etc.

d

Consider a linear output function for :

(5) å
=

=
n

i
ii xwy

1

ˆ

 Suppose that N sample data are used for training the weights

 , so that the following mean squared error may be minimized:

(6)

Applying the gradient descent method yields

Drawbacks of this algorithm are:
q Until you present all the training data, you cannot make any correction

to the weights.
q As the size of the training data increases, a large memory space is

required to store the results.

Neural Net Training Based on Gradient Descent

Synapses

ŷ

+ _

Δwi = −ρ 2
N

(ŷ j − y j)xi
j

j=1

N

∑

Memory

Training Data

The Delta Method: An alternative to the global gradient descent

An alternative method is to execute updating the weight every time the training data
is presented.

(8) []][][kxkkw ii rd=D for the k-th presentation

(9) where][][][)(kxkwkyk llå-=d

 Correct output for the

training data presented
at the -th time

Predicted output based on the
weights for the training data
presented at the -th time

 epoch 1 epoch 2 epoch 3 epoch 4 epoch p

N presentations

The Delta Method: An alternative to the global gradient descent
Make a quick correction to the
weights for each presentation
of the individual training data.

N training data are randomly presented to the
neural net, and make weight changes N times.
Repeat this sequence of N presentations, called
an epoch, many times until it converges.

 W0

Minimum

point

W-space

W0
Minimum
point

w1w1

w2

JN

The Widrow-Hoff Algorithm: Stochastic Gradient Descent

An alternative method is to execute updating the weight every time the training data
is presented.

(8) []][][kxkkw ii rd=D for the k-th presentation

(9) where][][][)(kxkwkyk llå-=d

 Correct output for the

training data presented
at the -th time

Predicted output based on the
weights for the training data
presented at the -th time

• Compared to the full Gradient Descent method
(batch processing), the Widrow-Hoff algorithm
may be erratic in each step of weight correction,
since it evaluates the gradient based on only one
data point (one example);

• But, no need to store each presentation result;
much quicker in making corrections, particularly
for a large training data set. à This property has
led to Massively Parallel and Distributed
Processing, an important feature of Neural Nets.

Question: Does it converge? Where to converge?

 W0

Minimum

point

W-space

W0
Minimum
point

w1w1

w2

JN

Convergence Analysis of Stochastic Gradient Descent
For linear output functions, Convergence Conditions have been obtained.

• With a constant learning rate r , the
learning does not converge.

• The learning rate r[k] must be varied.
• All the weights converge to their optimal

values with probability 1, when the
following conditions are met

Example:

ρ[k] = c
k

This meets
the three
conditions.

of iteration

r[k]

Le
ar

ni
ng

 R
at

e

(Robbins and Monroe, 1951)

Limitation to Rosenblatt’s Perceptron and the birth of Multi-Layer Neural Network

Linearly separable.
1x

2x

Not linearly separable.

Class 0

Class 1

1

Input Output
0 0 0
0 1 1
1 0 1
1 1 0
X1 X2 y

The Exclusive OR Problem
 Can a single neural unit (perceptron) with

weights produce the XOR
truth table?

 No, it cannot

(15) 32211 wxwxwz ++=
Set z=0, then 1 1 2 2 30 w x w x w= + + represents a straight line in the plane.

(16)
î
í
ì

£
>

=
00
01

)(
z
z

zg Class 0 and class 1 cannot be
separated by a straight line. …
Not linearly separable.

No, you cannot.

z | g

x1

x2

1

w1

w3

w2

(15)
Set z=0, then represents a straight line in the plane.

(16) Class 0 and class 1 cannot be
separated by a straight line. …
Not linearly separable.

(15)
Set z=0, then represents a straight line in the 1 2x x- plane.

(16) Class 0 and class 1 cannot be
separated by a straight line. …
Not linearly separable.

Class 0

Class 1

3
12),(212121 --+== xxxxxxfz

3
12 321 --+= xxxz

This is apparently a
linear function:
Linearly Separable.

Consider a nonlinear function

replace 1x 2x by a new variable 3x

Hidden Unit
Not directly visible from output

-1.5

+1

+1

+1

+1
-2

-1/3

1

+1

Multi-Layer Neural Network

Input
Data

Output
Data

Unit 1

Unit j

Unit 4

Unit 5

Unit 2

Unit 3

Layer 0

Layer 1
Layer 2

Layer m
Layer M

Hidden Layers
Input
Layer

Output
Layer

Layer 0

Layer 1 Layer m
Layer m+1

Unit i

Unit i Unit j

Layer m

wji
[m]

xi
[m]

zj g(zj)
yj

[m] = xj
[m+1]

wji
[m]

xi
[m]

yj
[m] = xj

[m+1]

Input to a unit in layer m
from unit i

Weight of the connection from
unit i to unit j in layer m.

Layer 0

Layer 1
Layer 2

Layer m
Layer M

Hidden Layers
Input
Layer

Output
Layer

Output from unit j in layer m,
which is the same as the input to
a unit in layer (m+1)

Co
m

pa
ris

on

q The above example of XOR
manifested the need for hidden units
for solving a classification problem
that is not linearly separable.

q The hidden unit generates an
internal representation of the input
pattern, providing the output unit
with the critical information key to
the correct classification.

q Generalizing this hidden unit’s role,
the architecture of Multi-Layer
Neural Net was developed.

(Node)

18

Layer 0

Layer 1 Layer m
Layer M

()y tˆ(|)y t qz

z

z

z

z

z

z

z

z

z

z

z

z

Unit i Unit j

Layer m

wji
[m]

xi
[m]

zj g(zj)
yj

[m] = xj
[m+1]

Activation
Function

qA 3-layer neural network with the sigmoid output function satisfies the Function Approximation
Theorem, George Cybenko in 1989, Universal Approximator.

q It has been extended to deep neural nets with other output functions.

(Output Function)

Layer 0

Layer 1
Layer 2

Layer m
Layer M

Hidden Layers
Input
Layer

Output
Layer

Multi-Layer Neural Network

The Error Back Propagation Algorithm

How do we train the multi-layer perceptron, given training data
presented sequentially?

Input
Data

Output
Data

Co
m

pa
ris

on

z2 g2 z5 g5

z4 g4

z3 g3x2

x4

x3

x2

x1

w21

w32

w42

w53

w54

Example

Forward Path Computation
z2 = w21x1
z3 = w32x2
z4 = w42x2
z5 = w53x3 + w54x4

x2 = g2 (z2)
x3 = g3(z3)
x4 = g4 (z4)
y5 = g5(z5) = ŷ

Before formulating a general algorithm, let’s work out a simple example.

(Loss Function)

Example
Δwji = −ρ ∂E

∂wji
Gradient Descent:

y5 = g5(z5) = ŷ

z5 = w53x3 + w54x4

z2 g2 z5 g5

z4 g4

z3 g3x2

x4

x3

x2

x1

w21

w32

w42

w53

w54

E = 1
2
(ŷ − y)2

Chain Rule

z2 g2 z5 g5

z4 g4

z3 g3x2

x4

x3

x2

x1

w21

w32

w42

w53

w54

z5 = w53x3 + w54x4

z3 = w32x2 x3 = g3(z3)

Similarly,
Recall

−δ5 =
∂E
∂z5

= ∂E
∂y5

dy5
dz5

z2 g2 z5 g5

z4 g4

z3 g3x2

x4

x3

x2

x1

w21

w32

w42

w53

w54

z5 = w53x3 + w54x4

z2 = w21x1

z3 = w32x2
z4 = w42x2

∂x2
∂w21

δ5 = (y − ŷ)g '5(z5)
δ 4 = δ5w54g '4 (z4)
δ3 = δ5w53g '3(z3)
δ 2 = (δ3w32 +δ 4w42)g '2 (z2)

Δw53 = ρδ5x3
Δw54 = ρδ5x4
Δw32 = ρδ3x2
Δw42 = ρδ 4x2

Recursive Computation
Computation of delta’s from the final layer to the first layer

Error
Backpropagation

Changes
to weights

25

Predicted
Output

Correct Outputŷ y

Gradient Descent Δw = −ρ ∂E
∂w

Learning Rate

The Final Layer M

Final Layer M
Delta can be computed directly from
the correct output and the predicted
output.

26

d is backpropagated from those in
layer (m+1) to layer m;

The computation is similar to the
forward computation

Weighted sum

Hidden Units

27

Forward Computation

Backward Computation

The Error Backpropagation Algorithm
[Wobas 1974, 1994] [Rumelhart, Hinton, & Williams,1986]

Training of Multi-Layer Neural Nets with Error Backpropagation

1. Sigmoid output function

2. Smoothing of convergence process

3. Local minima

4. Mini-batch

5. Hyperparameters

Output Function: g(z)

Unit j

Layer m

wji
[m]

xi
[m]

zj g(zj)
yj

[m] = xj
[m+1]

Sigmoid Function

1. Sigmoid output function

g’=g(1-g)

These properties contribute to stabilizing the learning process.

A typical failure scenario of Neural Net training is “zig-zag” weight changes.
This results in a very slow convergence or even a divergence.
Suppose that the squared error function has a deep ravine.
The gradient direction bounces back and forth between the two steep walls, as
shown below.

Slow Convergence

Divergence

2. Smoothing of convergence process

Space of weights

 W0

Minimum

point

W-space

W0
Minimum
point

w1w1

w2

JN

Remedy: The zig-zag trajectory can be smoothed out by adding a
momentum term to the weight change formula.

Adding a momentum term

Space of weights

3. Local Minima

Convex Optimization Concave Optimization

S
q

u
a

re
d

 E
rr

o
r

S
q

u
a

re
d

 E
rr

o
r

Weights Weights

Training of a multi-layer neural net is typically a

concave optimization problem.

There are multiple local minima in the weight space.

Remedy: Train a neural net multiple times starting

with diverse initial conditions1, compare the total

squared errors, and pick the one that is the smallest

in squared error.

1 Randomize initial values of the

weights, and conduct the

training repeatedly starting at

different initial values of the

weights. Each may end up with a

different local minimum.

4. Mini-Batch Training

Layer 0

Layer 1 Layer m
Layer M

()y tˆ(|)y t qz

z

z

z

z

z

z

z

z

z

z

z

z

qThe classical Widrow-Hoff stochastic gradient descent algorithm makes corrections
to node weights for each single data point presented to the neural network.

qThis has pros and cons:
§ Pros: not much memory space is required; good for getting rid of local minima
§ Cons: induces more noise in error calculations

q An alternative is Mini-Batch training, where a small set of data points are presented
and the gradient is computed as the average of the gradients obtained from the
small set of data points.

Mini-Batch Size: 8

Average
gradientEBP

In practice, mini-batch size of 32 is
commonly used.

5. Hyperparameters

qNeural net training performance depends on the structure and parameters that
must be specified prior to training.

qThese parameters differ from node weights, wji’s, and are called Hyperparameters.

Layer 0

Layer 1 Layer m
Layer M

()y tˆ(|)y t qz

z

z

z

z

z

z

z

z

z

z

z

z
§ Learning rate r.
§ The number of hidden layers
§ The number of units in each layer
§ Mini-batch size
§ Epoch size
§ Output function

Summary
• Artificial Neural Network
– Basic neural network model
– Widrow-Hoff stochastic gradient descent method
– Nonlinear classification : XOR problem
– Multi-layer neural net
– The Error Back Propagation Algorithm
– Sigmoid output function and stability
– Momentum term for smoothing
– Local minima
– Mini-batch training
– Hyperparameters

