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xt = At−1xt−1 + Bt−1ut−1 + wt−1

x̂t|t−1 = At−1x̂t−1 + Bt−1ut−1

x̂t = x̂t|t−1 + Kt[yt − ŷt ]

Kalman Filter and Extended Kalman Filter
Given a State Equation:

Propagate UpdateSimulation Measurement

Recap

xt = f (xt−1,ut−1,t)+ wt−1

x̂t|t−1 = f ( x̂t−1,ut−1,t)

x̂t = x̂t|t−1 + Kt[yt − h( x̂t|t−1,t)]

qKF, EKF, and UKF provide a particular value of the state as estimate.



x

s
Gaussian Distribution

Mean       and standard deviationx s
Mean represents the estimated value very well, 
with Standard Deviation being Accuracy of 
prediction.

x

Non-Gaussian Distribution

A mean value does not represent the overall 
distribution of the random variables. 
The mean is the least likely value in this example.

3

qGiving a particular value as estimate makes sense when the state distribution is
Gaussian or unimodal.

qHowever, if the distribution is not Gaussian and multimodal, the single value is a 
poor representation.



Non-Gaussian Distribution

A mean value does not represent the overall 
distribution of the random variables. 

Belief

Belief  : the entire pdf distribution rather than a single value. 
 

Bayes Filter predicts the pdf distribution of a random variable. 
 

  
 
  Propagate   Update 
 
at time t-1    a priori estimate.  a posteriori estimate 

 

g(x)

gt−1(xt−1) ! gt|t−1(xt ) ! gt|t(xt )
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g(x)

x̂t−1 ! x̂t|t−1 ! x̂t Kalman Filter
Bayes Filter



Markov Process 
 

Discrete-time stochastic state transition, in general: 
 

  
 
The probability of random variable  , given previous states and 
inputs . 

 
A special case where the probability of  depends only on , the 
process is called a Markov Process. 
 
   

 

Pr(xt | x0,!,xt−1,u0,!,ut−1)

Xt = xt
x0,!,xt−1,u0,!,ut−1

Xt = xt xt−1,ut−1

Pr(xt | xt−1,ut−1)
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x0 xt−2 xt−1 xt
u0 ut−1ut−2

…….



Pr(xt ) = Pr (xt | xt−1,ut−1)Pr(xt−1)dxt−1−∞

∞
∫

Chapman-Kolmogorov Equation

Pdf of 
Pr(xt−1)

xt−1 xt

Pr(xt | xt−1,ut−1)

State               can be reached from
with conditional probability density of

where                            has a pdf of                .

Therefore, the pdf of               is given by    

Xt = xt xt−1

Pr(xt | xt−1,ut−1)

−∞ < xt−1 < ∞ Pr(xt−1)

Pr(xt )

This is called the Chapman-Kolmogorov Equation.
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xt



State Propagation Law

q In our Bayes Filter problem, we want to recursively estimate a priori belief 

from a posterior belief at time t – 1, 

q Given a state transition equation

q Applying the Chapman-Kolmogorov Equation, 

gt|t−1(xt )
gt−1(xt−1)

xt = f (xt−1,ut−1)+ wt−1

gt|t−1(xt ) = Pr(xt | xt−1,ut−1)gt−1(xt−1)dxt−1−∞

∞
∫

How can we find this probability?
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Additive noise

gt−1(xt−1) gt|t−1(xt )

xt = f (xt−1,ut−1)+ wt−1



xt = f (xt−1,ut−1)+ wt−1

q The State Transition Equation

Deterministic Random

q Given        and         , the randomness of       comes from  process noise  xt−1 ut−1 xt wt−1

fW

wt−1

pdf of wt−1
wt−1 = xt − f (xt−1,ut−1)Since 

The  state transition pdf is given by

Pr(xt | xt−1,ut−1) = fW (xt − f (xt−1,ut−1))

Back to the Chapman-Kolmogorov equation:

gt|t−1(xt ) = fW (xt − f (xt−1,ut−1)) gt−1(xt−1)dxt−1−∞

∞
∫

a priori belief ….. Belief Propagation Law

State Propagation Law (Continued)
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~ fW (wt−1)



gt|t−1(xt )gt−1(xt−1)

Where are we ?

a posteriori belief a priori belief

State transition with process noise

gt (xt )
t = t +1

Assimilating a new observation      with measurement noise yt
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gt|t−1(xt )gt−1(xt−1)

Where are we ?

a posteriori belief a priori belief

State transition with process noise

gt (xt )
t = t +1

Assimilating a new observation      with measurement noise yt

Belief Propagation

Belief Update
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gt−1(xt−1) gt|t−1(xt )



gt|t−1(xt )gt−1(xt−1)

Where are we ?

a posteriori belief a priori belief

State transition with process noise

gt (xt )
t = t +1

Assimilating a new observation      with measurement noise yt

Belief Propagation

Belief Update
Kalman Filter:

x̂t = x̂t|t−1 + Kt[yt − ŷt ]

11How do we construct this for Belief?



Bayes’ Rule

p(x, y) = p(x | y)p( y) = p( y | x)p(x)

∴ p(x | y) = p( y | x)p(x)
p( y)

q Joint probability density

State 

x
Observation 

yp( y | x)

q Suppose that we know the conditional density 
how can we estimate the state x from observation y:             ?

p( y | x)
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p(x | y)

qRemark: p( y) = p( y | x)p(x)dx
−∞

∞
∫

1= p(x | y)dx = p( y | x)p(x)
p( y)

dx = 1
p( y)

p( y | x)p(x)dx
−∞

∞
∫−∞

∞
∫−∞

∞
∫

⎛
⎝⎜

⎞
⎠⎟

q Therefore, denominator p(y) is a scaling factor.
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p( y) is nothing but a scaling factor that makes p(x | y)dx
−∞

∞
∫ = 1

q We do not need to know          . So, let’s replace it by a constant: p( y) p( y) = 1
η

p(x | y) =ηp( y | x)p(x)

yt = h(xt ,t)+ vt

Then,
Measurement y

Prior

Generative Model
(Similar to Likelihood Function)

gt|t−1(xt )

gt (xt )

a priori belief

a posteriori belief

State Observation (Output function):

Deterministic Random

fV

vt
vt

p( y | x)→ fV ( yt − h(xt ,t))

∴ gt (xt ) =η fV ( yt − h(xt ,t))gt|t−1(xt ) Belief Update

q We can construct                from the measurement equation:p( y | x)

gt (xt )

xtMeasurement yt

gt|t−1(xt )

xt

fV (vt )
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The Bayes Filter Algorithm

1. Initial Conditions:                 set t = 1;
2. Belief Propagation:

3. Assimilate     and update the a priori belief

4. Return          .     Set t = t + 1 and repeat.

g0(x0 )

gt|t−1(xt ) = fW (xt − f (xt−1,ut−1)) gt−1(xt−1)dxt−1−∞

∞
∫

gt (xt ) =η fV ( yt − h(xt ,t))gt|t−1(xt )

gt (xt )

yt

xt

gt (xt )

xMAP
Maximum a 

Posteriori 
Prediction

Median

Mean

Modes

Interpretation

q Interpretation of the belief
§ Maximum a Posteriori Prediction (MAP)
§ Modes (multiple)
§ Medium
§ Mean

gt (xt )



15

A Robot at the Killian Court, MIT

The robot has no idea where it is at the entrance of Building 10.
It has a LIDAR system to detect objects nearby, e.g. pillars.
Good thing, it has learned Bayes Filter, passing 2.160.

Illustrative Example
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x

x x

xx

x

Initially, the robot has no idea where it is:
A uniform distribution

A pillar has just been detected, but the robot 
does not know which pillar it is.

p(y | x,M ) Map landmarks

g1(x1) = ηp(y | x,M )g0(x0)

(A)

(B)

(C) (B)   X    (A)

g2|1(x2) = p(x2 | x1,u1)g1(x1)∫ dx1

(D)

(E)

(F)

Flattened

As the robot moves, the location estimate 
becomes more uncertain.

Now observing another pillar: 2nd observation.

p(y2 | x2)

g2(x2) = ηp(y2 | x2)g2|1(x2)

Most likely at the 
second pillar

Observation

Update

Propagation

Observation

Update

Illustrative Example
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Bayes Filter
qNonlinear dynamics, non-Gaussian distribution
qUse of “Belief”, pdf estimation rather than a single value estimation.
qBimodal, skewed distribution of state can be treated.
qMultiple Hypothesis Tracking: all possible cases are tracked.
qLow probability cases, too, are not eliminated.

qComputationally expensive:

x

gt|t−1(xt ) = fW (xt − f (xt−1,ut−1)) gt−1(xt−1)dxt−1−∞

∞
∫

gt (xt ) =η fV ( yt − h(xt ,t))gt|t−1(xt )
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Bayes Filter

Particle FilterKalman Filter

Assume:

• Gaussian noise

• Linear time varying 

system

Apply:

• Monte Carlo 

Approximation

• Importance sampling

Kalman Filter can be derived 

from Bayes Filter; 

Proof of Kalman Filter

Bayes Filter can be computed 

effectively with Particle Filter;

Implementation of Bayes Filter

Most General:

Nonlinear dynamics;

Non-Gaussian noise
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8.4 Gaussian Kalman Filter (so-called Kalman Filter)
q Kalman Filter is a special case of Bayes Filter. We can derive Kalman Filter from Bayes Filter by making 

the following assumptions.
q Assume a Linear Time-Varying stochastic system:

xt+1 = Atxt + Btut +Gtwt
yt = Htxt + vt

ut ≡ 0,Gt = IFurther assume for brevity

wt ~ !(0,Qt ), vt ~ !(0,Rt )
q Assume white (uncorrelated) Gaussian noise:

where

E[wtws
T ] =

Qt ; t = s

0; t ≠ s
,

⎧
⎨
⎪

⎩⎪
E[vtvs

T ] =
Rt ; t = s

0; t ≠ s
,

⎧
⎨
⎪

⎩⎪
E[wtvs

T ] = 0,∀t,∀s

and Gaussian distribution

fW = 1

det(2πQt )
exp − 1

2
wt
TQt

−1wt
⎛
⎝⎜

⎞
⎠⎟
, fV = 1

det(2πRt )
exp − 1

2
vt
T Rt

−1vt
⎛
⎝⎜

⎞
⎠⎟
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Deriving Kalman Filter from Bayes Filter

qGoal: Find an optimal state estimate that minimizes the mean squared prediction 
error conditioned by all the prior observations and inputs.

x̂t
o = argmin

x̂t
E[| x̂t − xt |

2 y1,!, yt ,u1,!,ut−1]

qThis is equivalent to the conditional mean:

x̂t
o = E[x̂t y1,!, yt ]

x

Check this for a scalar case:

J = E[| x̂ − x |2]

dJ
dx̂

= 2E[x̂ − x] = 2( x̂ − E[x]) = 0, ∴ x̂ = E[x]
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Proof of Gaussian Kalman Filter (Outline)

qGiven that                     is Gaussian, show that                  , too, is Gaussian.gt−1(xt−1) gt|t−1(xt )

gt−1(xt−1) gt|t−1(xt )

Pt−1 Pt|t−1

Linear State Transition

qUse Induction:

gt−1(xt−1) =
1

det(2πPt−1)
exp − 1

2
(xt−1 − x̂t−1)

T Pt−1
−1(xt−1 − x̂t−1)

⎛
⎝⎜

⎞
⎠⎟

If the distribution of         is Gaussian with mean          and covariance

Pt|t−1 = At−1Pt−1At−1
T +Qt−1

x̂t−1xt−1

Then we can show that                 is also Gaussian. 

gt|t−1(xt ) =
1

det(2πPt|t−1)
exp − 1

2
(xt − x̂t|t−1)

T Pt|t−1
−1 (xt − x̂t|t−1)

⎛
⎝⎜

⎞
⎠⎟

gt|t−1(xt )

x̂t|t−1 = At−1x̂t−1

where

qThis is a highly technical derivation. See the lecture notes for details.

Linear state 
propagation 
does not distort 
the distribution.

Step 1

a posteriori belief a priori belief

Pt−1
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Step 2: Belief Update

qRecall gt (xt ) =η fV ( yt − h(xt ,t))gt|t−1(xt )

Gaussian 
with Covariance Rt

Gaussian 
with Covariance Pt-1

exp(#) exp(##)

qTherefore, the belief update should be in the following form: 

gt (xt ) =η 'exp[#]exp[##] =η 'exp[#+ ##] =η 'exp[−N (xt )]

qHere,
N (xt ) =

1
2
( yt − Htxt )

T Rt
−1( yt − Htxt )+

1
2
(xt − x̂t|t−1)

T Pt|t−1
−1 (xt − x̂t|t−1)

qThis is a quadratic function of xt

N (xt ) =
1
2
xt
T (Ht

T Rt
−1Ht + Pt|t−1

−1 )xt +!

Measurement noise pdf
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Step 2: Belief Update (Continued)

N (xt ) =
1
2
xt
T (Ht

T Rt
−1Ht + Pt|t−1

−1 )xt +!

gt (xt ) =η 'exp[−N (xt )]

where

qRecall that the optimal estimate is the conditional 
mean:

qSince the pdf of xt is Gaussian, the mean is at
the peak and is unique: Convex Optimization.

pdf
gt (xt )

x̂t
o = E[x̂t y1,!, yt ]

dgt (xt )
dxt

=η 'exp[−N (xt )]
d
dxt
(−N (xt )) = 0

dgt (xt )
dxt

= 0

∴
dN (xt )
dxt

= 0
exp[−N (xt )] ≠ 0Since 
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Step 2: Belief Update (Continued)

where
dN (xt )
dxt

= 0 N (xt ) =
1
2
( yt − Htxt )

T Rt
−1( yt − Htxt )+

1
2
(xt − x̂t|t−1)

T Pt|t−1
−1 (xt − x̂t|t−1)

qRecall d
dx
(1
2
xT Ax + 1

2
xT Bx) = 0 → Ax + Bx = 0

dN (xt )
dxt

= 0Therefore → − Ht
T Rt

−1( yt − Htxt )+ Pt|t−1
−1 (xt − x̂t|t−1) = 0

qDenoting xt that satisfies the above optimality condition by x̂t
Pt|t−1
−1 ( x̂t − x̂t|t−1) = Ht

T Rt
−1( yt − Ht x̂t + Ht x̂t|t−1 − Ht x̂t|t−1)

= Ht
T Rt

−1( yt − Ht x̂t|t−1)− Ht
T Rt

−1Ht ( x̂t − x̂t|t−1)

→ (Pt|t−1
−1 + Ht

T Rt
−1Ht )( x̂t − x̂t|t−1) = Ht

T Rt
−1( yt − Ht x̂t|t−1)

Pt
−1 = Pt|t−1

−1 + Ht
T Rt

−1HtqNoting that                                  and pre-multiplying Pt
∴ x̂t = x̂t|t−1 + PtHt

T Rt
−1( yt − Ht x̂t|t−1)

This is the Kalman Gain Kt.

This agrees with the state update formula.

Note
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qWe have arrived at the familiar linear filter:

x̂t = x̂t|t−1 + Kt ( yt − Ht x̂t|t−1), Kt = PtHt
T Rt

−1

qIn this proof we have never assumed that the optimal filter is linear. Instead, the 
linear filter has been derived from the optimality conditions.

qKalman Filter is optimal among linear and nonlinear filters, as long as the 
noise, wt and vt, are Gaussian, and the process is linear time-varying.

Punch Line


