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Nonlinear System Modeling

q Practical systems are nonlinear to some extent.

Hard Spring Dry Friction
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Hybrid Linear-Nonlinear Modeling

Nonlinear 
Dynamical System

Linear DynamicsNonlinear 
Algebraic Map

Linear Dynamics Nonlinear 
Algebraic Map

Hammerstein Model

Wiener Model

u(t)

u(t)

y(t)

y(t)

q Putting all nonlinear elements to either input side or output side, we can 
split a nonlinear dynamical system into a linear and nonlinear system.

qDescribing functions, too, apply to the above hybrid systems.
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Use of Time Delay Outside an Algebraic MapNonlinear 
Dynamical System

Recurrent Network

u(t)
y(t)

u(t-1)

u(t-m)

u(t)

qCreating regressor at 
the input

qTime Delay in the 
feedback loop

Neural Network
Radial Basis Function

u(t) y(t)

y(t-1)
Directed Acyclic Graph can also capture dynamic 
behaviors, but are seldom used in systems and control. 4



Nonlinear System ModelingNonlinear 
Dynamical System

Linear DynamicsNonlinear 
Algebraic Map

Linear Dynamics Nonlinear 
Algebraic Map

Nonlinear 
Algebraic MapTime 

Delay

Nonlinear 
Algebraic Map

Time Delay

Nonlinear Algebraic Map 
is involved in all models
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Nonlinear Algebraic Map
Expansion of a nonlinear function to a series of basis 
functions x

y

y(x) ≅ α kgk (x)
k=1

m

∑
q Global basis functions

§ Trigonometric functions ----------- Fourier Series Expansion
§ Polynomials -------------------------- Volterra Series Expansion

y =α0 +α1x1 +α2x2 +α3x1x2 +α4x1
2 +!

q Locally-tunable basis functions
Capture local features of a nonlinear function, which would be 
averaged out if global basis functions are used.

§ Radial basis functions ----------- We will discuss this further here.
§ Wavelets -------------------------- Spatiotemporal functions

q Hybrid local-global basis functions
§ Neural networks

y
x

y

x

x

y e.g. seismic signal
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Radial Basis Functions
q Radial Basis Functions are one of the most widely used 

local basis functions in control, machine learning; kernel, 
Gaussian processes, Koopman observables, etc. 

q Local basis functions are powerful tools for capturing 
local features and representing a nonlinear function with 
locally-tunable resolution and accuracy.

γ k

rk

gk

x1

x2

Symmetric about 
the center line

q A Radial Basis Function                                  
is a real-valued function that depends only 
on the distance between an input                
and a center point                .

q The distance is scaled with a dilation
parameter      :

x ∈ℜn

γ k ∈ℜ
n

gk :ℜ
n→ℜ, k = 1,!,m

βk

rk =
x − γ k
βk

, k = 1,2,!,m

y = gk (rk ) k = 1,2,!,m

Dilation parameter

Center point

x ∈ℜn

βk= small

βk= large
x − γ k7



Radial Basis Functions - 2

q Among many radial basis functions, Gaussian function is the most prevailing.

γ k
α k

gk

x1

x2

q Expanding a nonlinear function,              , to 
a series of radial basis functions: 

βk

rk =
x − γ k
βk

, k = 1,2,!,m

gk (rk ) =
1

2π
exp − 1

2
rk
2⎛

⎝⎜
⎞
⎠⎟
, k = 1,2,!,m

g0(x)

g0(x) = α kgk
k=1

m

∑ (rk ;βk ,γ k )

q Placing m radial basis functions at center 
points       with dilation parameters      ,  we 
approximate a given nonlinear function        
by tuning weights 

g0(x)
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Function Approximation Theorem

g0(x) = α kgk
k=1

m

∑ (rk ;βk ,γ k )

q This class of basis functions (and many other basis functions, including a neural network) can 
approximate a broad class of nonlinear functions to any accuracy. 

For any (small) positive e > 0, there exists a finite integer              such that m < ∞

g0(x)− α kgk (rk ;βk ,γ k )
k=1

m

∑ < ε ,

∀x ∈D
where D is a compact subset. g0(x)

α kgk
k=1

m

∑

This function approximation problem was studied by Kolmogorov, etc.
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Tuning of a RBF network

q The objective of system identification is to fit a series of RBFs, or a network of RBFs, to a 
given set of input-output data.

(x(i), y(i)) | i = 1,!,N{ }
1). Non-Adaptive Grid Method

q Place center points of m RBFs at grid points 
uniformly across the input space : x ∈ℜn×1

βk
γ k

γ k ∈ℜ
n×1, k = 1,!,m

q Dilation parameters       , too, are pre-
determined. 

βk

q Writing as

q Determine weights                  to minimize the prediction error.

gk (rk ;βk ,γ k ) gk (x)

ŷ(x) =α1g1(x)+!+α kgk (x)+!+αmgm(x)

α1!αm

x1

x2

rk =
x − γ k
βk
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Non-Adaptive Grid Method

ŷ(x) =α1g1(x)+!+α kgk (x)+!+αmgm(x)

(x(i), y(i)) | i = 1,!,N{ }

Real System

Model: q

x(i)
y(i)

ŷ(i |θ )

Prediction 
Error

qThis is a standard Least Squares Estimate problem.

θ̂ LS = argmin y(i)− ŷ(x(i))( ) 2
i=1

N

∑

qTreat                               as  components of a regressor,g1(x),!,gm(x)

ϕ =

g1
!
gm

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

, θ =

α1
!
αm

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

ŷ(x) = θTϕ(x)

We can write the predictor as a linear regression.
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Non-Adaptive Grid Method

ŷ(x) =α1g1(x)+!+α kgk (x)+!+αmgm(x)

qThe solution is given by

θ̂ LS = argmin y(i)− ŷ(x(i))( ) 2
i=1

N

∑

qThis simple LSE can be computed in real time. It has been applied to adaptive control, 
where the linear regression                             is incorporated into a Lyapunov function, 
or computed with recursive least squares.

qThis, however, requires offline tuning of dilation parameters and grid points.
qOne drawback is the Curse of Dimensionality. As the input dimension increases, a

number of RBF are required.

θ̂ LS =
α̂1
!
α̂m

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

g1(x(i))

!
gm(x(i))

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

g1(x(i)) " gm(x(i))( )
i=1

N

∑
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−1

y(i)

g1(x(i))

!
gm(x(i))

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟i=1

N

∑

ŷ(x) = θTϕ(x)
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Tuning of a RBF network

2). Data-Adaptable Method

q The Grid Method places RBFs uniformly across 
the input space and, thereby, requires a lot of 
RBFs.

q The Grid Method also uses a uniform dilation
parameter bk for all the RBFs.

q Nonlinear functions may have diverse spatial 
frequencies, depending on the region of the 
function.

q Higher resolution may be needed in a particular
region, while low resolution is acceptable for 
other regions.

q If the density of RBFs and dilation parameters 
can be tuned to specific local properties and 
needs, a limited number of RBFs can be used 
effectively for approximating a given functional 
relationship.

Low Resolution Low ResolutionHigh 
Resolution

Sparse RBFs
Large dilation

Dense RBFs
Small dilation

y

x

g0(x)
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Data-Adaptable Method

qDepending on the spatial frequencies of nonlinear function                 and required 
approximation accuracy, the density of RBFs and dilation parameters can be adjusted.

g0(x)

gk (x) =
1

2π
exp − 1

2
x − γ k

2

βk
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
, k = 1,2,!,m

qChallenge: Dilation bk and center point gk are  nonlinearly involved in each RBF.
q In principle, the three parameters, ak , bk and gk should be optimized simultaneously to best 

fit a given data set, but it is difficult. A practical approach is a sequential tuning: 

§ 1st Step: Placement of center points;
§ 2nd Step : Determination of dilation based on variance of nearby data points; and
§ 3rd Step : Least Squares Estimate

γ k → βk →α k
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Data-Adaptable Method

Step 1 Center Point Placement

q More RBFs are placed in an area having a higher 
density of data points.

q Suppose that a given number of RBFs, m, are to be 
placed in an input space of N data points. How can 
we find m center points, so that the density of 
data points is approximately proportional to the 
density of center points?

q This problem can be solved as a Clustering
Problem (Vector Quantization).

Given:

q N input data: 

q The number of RBFs: m;

q Initial locations of m center points:

x(1),x(2),!,x(N )

γ 1[0],γ 2[0],!,γ m[0],

x1

x2 RBF-1

RBF-m

x(1)
x(2)

x(N)
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k – Means Clustering Algorithm
Set iteration index ℓ = 1

Step 1.  Given                                        find the 
nearest center point for each data point

γ 1[ℓ],γ 2[ℓ],",γ m[ℓ],

x(i), i = 1,!,N

x(i)
x( j)

γ 1[ℓ] γ 2[ℓ]Step 2.  Compute the center of mass, i.e. 1st order 
moment, of the data points that have been classified 
to the same cluster in Step 1.

x(i)
x( j)γ k[ℓ+1]

γ k[ℓ]

Revised center pointγ k[ℓ]→ γ k[ℓ+1], k = 1,!,m

Step 3.  Set                and repeat Steps 1 and 2 until the 
within-cluster sum of squares converges to a local 
minimum.

ℓ = ℓ+1

J[ℓ] = 1
N

x(i)− γ j[ℓ]
i=1

N

∑
j=1

m

∑ 2qij[ℓ]

where
qij[ℓ] =

1:  if data point i belongs to cluster j
0 :else                                              

⎧
⎨
⎪

⎩⎪ 16
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Membership Function 

J[ℓ] = 1
N

x(i)− γ j[ℓ]
i=1

N

∑
j=1

m

∑ 2qij[ℓ] qij[ℓ] =
1:  if data point i belongs to cluster j
0 :else                                              

⎧
⎨
⎪

⎩⎪

Q ={qij}

Q ={qij}=

1 ! j ! m
1
"
i 0 0 1 0 0
"
N

Q ={qij}=

1 ! j ! m
1 0
" 1
i 1
" 0
N 1

Only one 1 in each row.
Data point i belongs to center j.

Multiple data points belong to center j.



Determining Dilation bk
Properties of Dilation Parameter

Large dilation
Small dilation

Large overlap à Smooth curve
Low resolution High resolution

Sparse Dense

βk =
x(i)− γ k

2
qik

i=1

N

∑

qik
i=1

N

∑
, k = 1,!,m

Determine Dilation based on the variance of data points belonging to the same cluster, 
i.e. within-cluster variance.

Discussion: Is this the right method?
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Wavelets

19

q Wavelets are a collection of brief oscillation functions, each having a specific frequency and 
features.

q When each function is convolved with an unknown signal, the correlation between the wavelet and 
the signal reveals where/when that component with the particular frequency and features has 
occurred. 

q Applications: Seismograph, voice recognition, heart monitoring, etc.

Mexican 
Hat

MorlettMeyer


