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Prediction Error Correction Formalism
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Kalman Filter

1 Quantifying Uncertainty
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Recap Discrete-Time State Observer Formulation

 Plant Model: Linear Time-Varying System
 State (transition) equation

xt+1 R Atxt + Btut
x1 x1
where X, € R"™ state vector u, R’ input

e Qutput equation (measurement equation)

Y, = Htxt Y, € R X1 estimate

d Luenberger Observer Time
X, = AX, + Bu, + L(J’t — J’t)
Prediction Error: negative feedback

» |f the system is observable, the estimated state exponentially converges to the true state.

Vo

Xy tj X, Convergence speed : Pole placement

d Kalman filter uses an optimal gain based on statistical properties of noise.



Kalman Filter v.s. Recursive Least Squares

There is no fundamental difference between parameter estimation and state estimation.
Xl = Atxt + Btut + Kt(yt _yt)

Treat parameters to estimate as state variables that are constant but unknown. Replacing 4,
by the identity matrix and setting B, to 0 yield

N

9t+1 = IQt +Ou, +Kt(yt —j/t)



Kalman Filter has been extended to many filters.

Kalman Filter

Discrete time ﬂf -

l Linear plant dynamics

Gaussian noise

{

Continuous time _ _ ] _ _
Nonlinear plant dynamics Nonﬁaussmn noise

Bayes Filter
Particle Filter

Kalman-Bucy Filter
Riccati Equation
Convergence analysis

Extended Kalman Filter
Unscented Kalman Filter



Formulation of Discrete Kalman Filter: Quantification of Uncertainty

J First we quantify both measurement noise and process noise with respect to mean and
correlation/covariance. We assume that noise is wide-sense stationary.

d The mean of noise is assumed zero, and constant.

origin of coordinate axes.

Elv,|=

Measurement Noise V,

Zero Mean

d We assume Uncorrelated (White) noise.

(J Note that each of measurement and process noise is a

Process Noise W

E[w,]=0

vectorial quantity. Auto-correlation is the correlation
between two time slices of the same random process
(the same component of a noise vector).
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Quantification of Uncertainty: Cross-Correlation

(1 We also characterize noise properties with respect to Cross-Correlation: the correlation
between two different components of the same noise vector or the one between
measurement and process noise.

Measurement or Process Noise % \ Correlation between measurement and
Vil process noise
v, . v, = : v, |
t
L a L /L\ Measurem
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Quantification of Uncertainty: Covariance Matrices

M In vector and matrix form, auto-correlation and cross-correlation can be collectively expressed as

/

E[vtvST] =

\

E[vt,lvs,l]

E[vt,ﬁvs,l]

\
E [Vt,l"s,z]

E [Vt,z"s,z]

1 When ¢ = s, the diagonal terms represent variance of the individual noise component and
off-diagonal terms co-variance. E[vtzi] — 0-1,2

M In summary,

e Measurement noise covariance

r

Tq_ £
Elvv, ]=-+
0; t#s

.

* Covariance R, is assumed to be positive definite.

* There is no perfect sensor.

R: t=s

* Process noise covariance

E[wth]:<

(

.

Q,; t=s

0; t#s

* Covariance (), is assumed to be

positive semi-definite.



Measurement and Process Noise Cross-Correlation

V

t E[thz]: 0 For all t and s,

 However, in some application, process noise also
influences measurement, as in the case of a self-
driving car.
w, [ For the sake of simplicity, we assume that there
is no correlation between them, but this
assumption can be removed.

PS#2 Problem 2

[ Finally, we assume that these noise terms additively disturb the process. Namely the state
and measurement equations are given by

X, = Atxt + Btut + Gtwt
Additive noise
Yy = Htxt + Vs

U G, represents how the process noise disturb the state variables.



Optimal Filtering Problem

Vo

 Find a state estimate, X, that minimizes the mean squared prediction error:

- . 5
J =E[|x,—x, []
Subject to state and measurement equations

x, ., =Ax. +Bu +Gw
t+1 "t e Lol Linear Time Varying System

Ve = Htxt TV,
where process noise, W, and measurement noise, v, ,are uncorrelated
(White) noise as characterized above.
d Assuming that the noise distribution is Gaussian, Kalman Filter is the optimal
among linear and nonlinear filters.

)et+1 = At)et + Btut + Kt[yt _J;t]

J Assuming that the filter structure is linear, K [y, — y,], Kalman Filter is the
optimal linear filter, regardless of noise distribution.

We first prove the second problem, and show the proof
for the first problem at the Bayes Filter lecture.

Gaussian

\\\ ‘
\——

Non-Gaussian



The Flow of the Discrete Kalman Filter Algorithm
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13



The Flow of the Discrete Kalman Filter Algorithm

<
~
5

<
~
@)
o
wn
)
-3
<
Q
=,
O
o

| |
~— : _|_~U» Prediction Error :
Observations up to ! _. > TV |
and including 7- 1 ! ﬂ U |
———————————————— F———— === === |
: 1 i ¢ Predicted ! A .
: : ) _J_/t_ output | Correct xt|t_1 :
: State estimate ﬂ | : U :
.. | | I

l o - a priori | .
| X1 = xt|t—1 state | | B a posteriori |

|

: _ ;]! t state |
—————————— Propagation — - — — — — ——— " | :
|- — - - Update - ---

Expected state transition
based on the state equation,
e.g. open-loop simulation



Propagation of State

Real

O——

Y

Gain

1 Using the state equation, we want to predict the transition of state: . Plant
_
X, =4,_x,_;+ %1 +G,_ W, Model

X

dThe deterministic term, B, |u,_,,
loss of generality.
 Taking expectation yields

E[x,1= E[4,

can be omitted by setting, U, = 0, without

This is the state estimate at time -1
-’ Zero mean

X1
X+t Gow =4, Elx,_ 1+ G,_ Elw ]

[ This expected value of state,E[xt], is the predicted state at time ¢ based on the
estimated state atr—1. This is a priori state estimate denoted by

= A

t|t 1 1—1%1-1 Before measurement of output y(?) is available.
1 Using the output equation, the expected output is constructed as

= E[y,]= E[H x, +v ]:HtE[xt]+M
Zero mean
Wy, =Hx,  =HA

7V tlt—1 —1%—1
W This is a predicted output to be compared to an actual measured output.

¥



State Update

H Let V', be a newly observed output. The predicted output )A/t based on the previous state
estimate is then compared to the actual measured output and the error is used for
correcting, or updating, the a priori state estimate:

N

X +K [y, —y] @3

t t|t 1

J Note that we assume this linear update law in this proof. Gain K S S{’M is called the
Kalman gain. Our goal is to find an optimal gain that minimizes the mean squared prediction
error: J El|x, —x, *]

M Optimal gain:
K =argminjt =argmin E[| x, — x, ] Real i %
; ; Plant
ut
Gain[—O
Model




Effect of Kalman Gain K,
 Prediction Law: )Gt = )etv_l + Kt[yt — )A/t] (23)

 Note that there are two types of prediction error.

. . A A
* a posteriori error: e =X —X,
* apriorierror: g, 2 )22‘|t—1 — X,

[ These two prediction errors are related to each other. Using the state update law (23),

e =% =X, =X+ K[y, —»]-x soe=(UI-KH)e +Ky,
t|t1+K[Hx + v _thlt 1=, -~ /\\
. But, the
_ _ _ a priori error €, ‘
xt|t |~ X, + K H (x, xt|t—1) + Ky, ispattenuated bt measurement
~ - - g y noise is amplified

£ —£, (I-K,H,) j—b by K, .
1 As the gain K, becomes higher, the a priori error \

is more reduced but the measurement noise is Trade-off
amplified.
1 An optimal gain may exist by making the trade-off between the two.




Computation of an optimal gain
1 Computation of the squared a posteriori error: jt = E[| X, — x, |2]
QRecall e =X, —x,=(I-K,H)e +Kv,
 Omitting ¢ for brevity,
le’=[(I - KH)e+ Kv]'[(I - KH) e+ KV]
—c'e+e’ H'K'KHe +VvV' K" Kv—2e" KHe - 2e" H' K" Kv+ 2" Kv

 Necessary conditions for min jt(K)

d7,

dK

=0 But, K = {Klj} is @ matrix

L =0 For all i and , 1Si£n,1£j$€



Lemma Matrix differentiation Rules

O Consider a scalar function: f = a' Kb= ZZCI b K

where a emnxl bembd Keg{nxﬁ

af Because all others i# p, j # g are zeros, when
—2 _—ag b differentiating by K
0K P4 &
rq ()
e A 1
o.i=<a—f>=abT Note: ( bl bg )={apbq}
dK \aKp J an
\ J

J Consider another scalar function:

g=c'K'Kb, ceR™

Similarly, we can show that i(CTKTKb) _ KbcT n chT

dK DIY



Computation of Optimal Gain K,
leP=ele+e’ H K" KHe+v KT Kv—-2e" KHe —2e" H' K" Kv+ 2" Kv

d Applying these rules of differentiation by matrix K to the derivative of squared error,

2
d|€| — d g—|—i(28TKV—28TKH8) ----------------- Rule 1
dK d dK

d
+ d—K(gT H'K'"KHe +v K" Kv—2e" H' K" Kv) — Rule?2

—2ev! —2ee’H' + KHee' H' + KHee' HT + 2Kw! —2Kvel! HT —2KHev"

d

d—K(aTKb) =ab’

Rule 1

Rule 2 i(cT K" Kb)= Kbc" + Kcb"
dK



Computation of Optimal Gain K,

d|el
dK

—2evl —2ee’ H' + KHee' H + KHee' H' +2Kw! —2Kve! HT —2KHev!

 Taking expectation and setting it to zero,

Elev/1- Elee 1H' + K H Elee 1H' +K E[vy' 1-KE[ve 1H =0

LPl‘|l‘—1 R

5
Measurement noise covariance

0 Def . . : é T
efine a priori error covariance B‘V—l E[gtgt ]

 Examine E[&'tVtT]



E[eyv! 1= E[(
=A_E[X_v ]1-E[xv/] <%

Examine

/x:At1t1+G Wi

Examine E[StvtT]

— X

T A
_xt)vt | < € = X1 t

tlt—1

= A

tlt—1 t— 1 t—1

From X,_;, only process noise terms W, _,, W, 3,°"
come out, which do not correlate with the

E[x ]_E[( _1 tl G tl)V ]/measurement noise V,. E[WV 1=0

=4, E[xt v ]_|_ o M/] ,,E[x ] 0 For all £ and s,

Examine

E[x

tlt]

_ - A A T -
— E-(At—zxz—z + Kt—l(Ht—lxt—l TV~ yt—l)vt | <« Vg =, X, TV,

_2E[/,4]+K H, M]+E[”t] EM_

PFOCESS noise and measurement noise are not correlated.

n R T n n n
El(X,_y o+ K (V=Y )v, | =X =X, ,+K_ (Y _1=Y)

v,does not correlate with past Xt_z,xt_l,yt_l Uncorrelated E[vtvs 1=0; t#s



Optimal Gain K,

d From the above examination: E[EtVtT] =0

1 Back to the optimality conditions:

T T T T T T _
Elgv’ 1-Eleel |H + K H E[ee \H + K E[v,v ]—KtE%/]Ht =0

LB‘V—I LRt
_E|t—1HtT + KthPt|t—1HtT + Kth =0 |—> Positive definite

. | | | T _ T
d The optimal gain can be obtained from: Kt(HtPt|t—1Ht +R )= Pt|t—1Ht

Positive semi-definite

[ Note that matrix Hz‘Pt|t—1HtT + R, is positive-definite and invertible:

K; =F HtT(H P, H'+ Rt)_l This is the Kalman Gain

tlt—1 tT 17"t



So, how can we find a priori error covariance ?

Recursive Formula for Obtaining Ev—l = E[StStT]

1 a priori error covariance can be computed recursively together with another error covariance.
U Define a posteriori error covariance: Pt 2 Ele etT]
J Recall that a priori error and a posteriori error are related: € = ([ — Kth)gt + Ktvt

[ With this, the two error covariances are related as:
Elee' 1=E[(I- K H)e,+ Ky )(I-K H)e,+Kv)']
=(/-K,H)E[ee 1(I-K,H)"
T T T T
+ KtE[VtVt ]Kt + (1 — Kth)E D ]Kt + KtE[vt ) (L — Ksz)
. _ T T
wP=(-KH)P, (I-KH) +KRK,



Recursive Formula of Covariances, Pt|t . and Pt

1 The previous expression can be further simplified by using the optimal (Kalman) gain solution.

T T
F=0- Kth)Pt|t—1(]_ K.H,) + KthKj" F=0- Kth)EV—l

. T T —1
Kt o Pt|t—1Ht (HtPt|t—1Ht + Rt)
W This implies that a priori covariance is reduced by updating the a priori state estimate £t|t_1
with a newly assimilated measurement, ), .

This is called Covariance Update: P

1 >

d In turn, a priori covariance P can be derived from a posteriori covariance F,

1)t
J Recall: 4 _ .
£ X, 4= Atxt (Atxt + Gtwt) = Atet Gtwt

SZLI] = E[(4e, —Gw,)(Ae — Gtwt)T]

= Xyt

= E|[€

+1

d Compute:}; el

T4 4T TT T,~T T 4T
= A Elee, |4 +G Elww, |G, —AE[ew, |G, —G E[we, |4,

+1|¢

[ We can show E[etth] ;\O . Therefore, Pt+1|t = AtPtAtT + GtQthT
DIY



Recursive Formula of Covariances, Pt and Pt

t—1

U The last formula is called Covariance Propagation : Pt - Pt+1|t

Covariance Propagation

T T
P :4&$+@Q@

t+1t
t={t+1

Pt =/ - Kth)Pt|t—1
Covariance Update

1 Given initial conditions, P1|0' covariance matrices can be computed recursively along
with the Kalman gain

T T —1
K, =P, H'(HP, H' +R)

tlt—1 t =177t



Initial Error Covariance Pl‘ ) = PO,/ =] : Initial State

Kalman Filter Initial Con.ditions Estimate ,
¢ l Measurement y;
Recursive Compute Kalman Gain l l
Computation K,=P, H[HP, H +R]' ‘
Al ith Update State Estimate with
gorithm ﬂ new measurement
—
: X = AaX

Update error covariance
Pr = (1 _KrHr)Pn 1

Propagate error covariance ¢
P - AJ’RAIT + GI QI GIT E ﬂ
1<—1+1

x,=x, +K,(yv,-Hx, )

i ‘1|z 1

r+1|r :
ll : State Estimate X,

[ <1+1
The covariance and Kalman gain computation Real-Time
does not depend on measurements. Online Computation

Therefore it can be computed off-line.



Process Noise Measurement Noise

w(r) ”
(it
u(t) Syste (2) State Correction .
] Gain 3
T T Input
Pt+1|t = AtB‘At + GtQth Model | )
. . i (1) Simulation ) A
(1) Simulation: Propagation T
t—1 tlt—1
P, =Elee, ]
i L, =Ele €e1- 1]
(2) State Correction: _—
Update
K =PH'R"
P (1 — K H ) -1
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