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7.1 Applying Kalman Filter to Nonlinear Dynamical Systems

qSo far, we have been dealing with linear dynamical systems for constructing Kalman Filter.
qHowever, practical systems are nonlinear to some extent.

y(t) = h(x,t)+ v(t)

y

vx =
D
4
(ω R +ω L )

vy = 0

!φ = D
4b
(ω R −ω L )

!X = vx cosΨ
!Y = vx sinΨ
!Ψ = !φ

Example
Vehicle kinematics is nonlinear

LIDAR (a range finder) attached 
to a vehicle is in a polar 
coordinate system: nonlinear.

x = r cosθ
y = r sinθ

!x = f (x,u,t)+ w(t)
Nonlinear State Equation

Nonlinear Measurement Equation ω R

Ψ

vx x

X

Y
ω L

2b

q
r

LIDAR!φ
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Extension of Kalman Filter to Nonlinear Dynamical Systems

qLinearized Kalman Filter
qExtended Kalman Filter
qUnscented Kalman Filter

State Equation

Measurement Equation

!x = f (x,u,t)+ w(t), x ∈ℜn×1,u∈ℜr×1,w∈ℜn×1

y = h(x,t)+ v(t), y ∈ℜℓ×1,v ∈ℜℓ×1

Process noise and measurement noise are uncorrelated, white noise, with variance, Q(t) and R(t).
We consider three methods
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7.2 Linearized Kalman Filter

qThe nominal trajectory must satisfy the original 
nonlinear state equation.

qConsider deviation from the nominal trajectory:

!x*= f (x*,u,t)

Nominal Trajectory

Actual Trajectory

Δ x

time

x

x*(t)
x = x*+Δ x

q Linearize the nonlinear state equation around a nominal trajectory, e.g. reference trajectory, 
planned trajectory, commanded trajectory.

qAssuming that the deviation from the nominal trajectory is kept small, we can linearize the 
nonlinear state equation:

!x = f (x,u,t)+ w(t) = f (x*+Δx,u,t)+ w(t)

= f (x*,u,t)+ ∂ f
∂x x*

Δx + w(t)+ (higher-order small quantity)

!x*= f (x*,u,t)
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Linearized Kalman Filter

!x = !x*+Δ !x

Δ !x ≅ ∂ f
∂x x*

Δx + w(t)

Δ !x !x ∂ f
∂x x*

!x = F(t)x(t)+ w(t)

!x = f (x*,u,t)+ ∂ f
∂x x*

Δx + w(t)

!x*= f (x*,u,t)

qNote that the nominal trajectory satisfies the state equation with no process noise and 
that the derivative of the deviation is given by . 

qNow replacing            by        and the Jacobian matrix by F(t), we have a 
linear time-varying state equation
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Linearized Kalman Filter
qSimilarly, the measurement equation can be linearized around the nominal trajectory:

qNote again .  Replacing             by  y and the Jacobian matrix by H(t), 

qThe original Linear Kalman Filter can be applied to this linear time-varying system.

y*+Δy ≅ h(x*,t)+ ∂h
∂x x*

Δx + v(t)

y*= h(x*,t) Δ y
∂h
∂x x*y(t) = H (t)x(t)+ v(t)

State Equation

Measurement Equation

!x = f (x,u,t)+ w(t),⇒

y = h(x,t)+ v(t), ⇒ y(t) = H (t)x(t)+ v(t)

!x = F(t)x(t)+ w(t)

H (t) = ∂h
∂x x*

F(t) = ∂ f
∂x x*

State propagation and update

Riccati Differential Equation

d
dt
x̂(t) = F(t)x̂(t)+ K(t)[y(t)− ŷ(t)]

dP(t)
dt

= F(t)P(t)+ P(t)FT (t)− P(t)HT (t)R−1(t)H (t)P(t)+G(t)Q(t)GT (t)
(Covariance propagation and update)

K(t) = P(t)HT (t)R−1(t)
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7.3 Extended Kalman Filter
q Linearized Kalman Filter is simple, but performs poorly when the actual trajectory deviates 

from a nominal trajectory. The state transition and measurement are linear approximation, 
while the true system is nonlinear.

q Extended Kalman Filter is a significant improvement in two major aspects:

F(t) = ∂ f
∂x x̂(t )

!̂x = F(t)x̂(t)+ K(t)[y(t)− H (t)x̂(t)]

H (t) = ∂h
∂x x*

1) The Jacobian matrices are evaluated not at nominal 
state x*(t) but at an estimated state

F(t) = ∂ f
∂x x*

H (t) = ∂h
∂x x̂(t )

2) State propagation and update use the full nonlinear state equation and measurement equation.

!̂x = f ( x̂(t),t)+ K(t)[y(t)− h( x̂(t),t)]

Nominal
Actual

time

x

x*(t)

Estimated x̂(t)

x(t)

x̂(t)

ŷ(t)
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Extended Kalman Filter
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Extended Kalman Filter
qCovariance propagation and update, however, are based on the linearized model of the 

nonlinear system. Namely, we use the Riccati Differential Equation using the Jacobian 
matrices evaluated at estimated state          .

qExtended Kalman Filter is a nonlinear filter.
qOptimality of state estimation is no longer guaranteed.
qExtended Kalman Filter (EKF) tends to underestimate the error covariance, when the system is 

highly nonlinear. This sometimes causes the divergence of estimate.

qUnscented Kalman Filter can better handle such a problem.

dP(t)
dt

= F(t)P(t)+ P(t)FT (t)− P(t)HT (t)R−1(t)H (t)P(t)+G(t)Q(t)GT (t)

x̂(t)

First-order approximation of nonlinear functions

Divergence Scenario
Underestimated P à Small Kalman Gain K à Insufficient State Update  à Growing estimation error
à Inaccurate Jacobians  F(t) and H(t) à Blow up
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7.4 Unscented Transform

q Unscented Kalman Filter, originally developed by Julier and Uhlmann [1997], uses a different 
method for computing error covariance matrices.

q It  does not use the Riccati Equations (continuous time) or the covariance propagation and 
update laws (discrete time). Instead it uses a special technique, called Unscented Transform, 
for propagating and updating covariance matrices.

q The key idea is to estimate the error covariance based on a special set of sample points, 
termed “sigma points”, which propagate directly through the original nonlinear model.
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7.4 Unscented Transform
q Consider a simple case where one-dimensional random variable X has a Gaussian 

distribution.

q Mean       and variance        completely characterize the distribution.

!x0 = x

!x1 = x + 1+κ ⋅σ
!x2 = x − 1+κ ⋅σ

0

1 2

1
1

2(1 )

W

W W

k
k

k

=
+

= =
+ !x0!x2 !x1

1+κ ⋅σ

Sigma Points

q Unscented transform represents Gaussian 
distribution with three special sample points, called 
Sigma Points.

where  k is a parameter of sigma points to be tuned, and Wi is 
the weight of the ith sigma point used for computing mean and 
variance.

x σ 2

x

p(x) = 1

2π ⋅σ
exp − (x − x )

2

σ 2
⎛

⎝
⎜

⎞

⎠
⎟
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Unscented Transform

q The weighted mean of the three Sigma points agrees with the true mean 
of the Gaussian:

q The weighted variance of the three Sigma points agrees with the true 
variance:

q Therefore, the mean and variance of Sigma points provide the correct 
mean and variance of the true Gaussian distribution for an arbitrary 
value of parameter k.

!x0 = x

0

1 2

1
1

2(1 )

W

W W

k
k

k

=
+

= =
+

Wi !x
i

i=0

2

∑ = κ
1+κ

x + 1
2(1+κ )

(x + 1+κ ⋅σ )+ (x − 1+κ ⋅σ ){ }
= κ
1+κ

x + 2
2(1+κ )

x = x

Wi( !x
i − x )2

i=0

2

∑ = κ
1+κ

(x − x )+ 1
2(1+κ )

(x + 1+κ ⋅σ − x )2 + (x − 1+κ ⋅σ − x )2{ }
= 2
2(1+κ )

( 1+κ ⋅σ )2 =σ 2

!x2 !x1

1+κ ⋅σ
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Unscented Transform

q Now consider a nonlinear transformation from x to y,

where function g(x) is analytic.
q The distribution of y is no longer Gaussian, but its mean E[y]

and variance E[(y-E[y])2] can characterize the distribution.
q We can show that the weighted mean of Sigma points 

transformed through the nonlinear function can approximate 
the true mean to the third order.

where O(4) is a small quantity of order 4 and higher.
q Furthermore, we can show that the weighted variance can 

approximate the true variance to the second order.

ysample ! Wi
i=0

2

∑ "yi = E[y]+O(4)

y = g(x) = g (k ) (x )
k!

(x − x )k
k=0

∞

∑

σ sample
2 ! Wi ( !y

i

i=0

2

∑ − ysample )
2 = E[( y − E[y])2]+Ο(3)

y

x

y = g(x)

y

x
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Example

qConsider a piecewise linear function for                 , 
as shown in the figure. (The two lines are 
connected with a smooth curve for 
differentiability.)

qThe mean of x is transformed to , which is 
not the true mean of the distribution of y. We can 
see by inspection:

qThe weighted mean of the Sigma points can give a 
better mean value.

y = g(x )

y = g(x)

ytrue = E[y] < y = g(x )

y

x

y = g(x)

y

x

y = g(x )
!y1

!y2
ytrue = E[y]

!x0 = x

!x2 !x1

Δ1

Δ2

ysample ! Wi
i=0

2

∑ "yi = κ
1+κ

!y0 + 1
2(1+κ )

( !y1 + !y2 )

= κ
1+κ

y + 1
2(1+κ )

( y + Δ1 + y − Δ2 ) = y +
1

2(1+κ )
(Δ1 − Δ2 ) < y

Δ1 < Δ2

∵Δ1 < Δ2The weighted mean of the Sigma points gives a better mean value.
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Sigma Points for Multivariate Gaussian Distribution

dimensional space nn x- ÎÂ

1
1 1

nx x n k s+ = - + × ×v!

2
2 2

nx x n k s+ = - + × ×v!

0x x=!

1
1 1x x n k s= + + × ×v!

2
2 2x x n k s= + + × ×v!

1v
2v

q In general, for an n-dimensional Gaussian 
distribution, we use (2n + 1) Sigma points.

qNote that the covariance matrix Px is real, 
symmetric, and positive-definite. Therefore, it 
can be diagonalized

qSigma points are taken along the individual 
eigen vectors with unit length, v1, …, vn.

1
12 1

( ) det(2 ) exp ( ) ( )
2

T
x xp x x x x xp

- -ì ü= - - -í ý
î þ

P P

T
x =P VDV

2 2
1 1( ), ( )n ndiag s s= =V v v D! !where

!x0 = x

!xi = x + n+κ ⋅σ i ⋅v i
!xi+n = x − n+κ ⋅σ i ⋅v i

0

1
2( )

1, ,

i i n

W
n

W W
n

i n

k
k

k+

=
+

= =
+

= !
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Sigma Points for Multivariate Gaussian Distribution

Weighted mean

qAs before, all the Sigma points propagate through a 
nonlinear analytic function, y = g(x), which is multivariate.

qFor these propagated points, the weighted mean is 
computed:

qThe weighted covariance is given by

qWe can show that the weighted mean can approximate the 
true mean to the third order, and the weighted covariance 
to the second order.

qThis sampling method is called Unscented Transform.

!yi = g( !xi ), i = 0,",2n

2

0

n
i

sample i
i

y W y
=

=å !

Py ,sample = Wi ( !y
i

i=0

2n

∑ − ysample )( !y
i − ysample )

T !yn+1 = g( !xn+1) !y1 = g( !x1)

!y2 = g( !x2 )

!yn+2 = g( !xn+2 )

ysample

True Mean

!xn+1

!x2

!xn+2

!x1
!x0 = x



17

7.5 Unscented Kalman Filter

q Consider a nonlinear discrete-time dynamical system:

q Process noise and measurement noise are zero-mean, uncorrelated (white) noise with 
covariance Qt and Rt.

q At time t-1,  a posteriori estimate          and a posterior error covariance are available:

q The problem is to find a recursive formula using Unscented Transform:
§ Propagation of state and covariance: Find             and           from and.         ;
§ Update of state and covariance: Find and from and            .   

xt+1 = f (xt ,ut ,t)+ wt
yt = h(xt ,t)+ vt

ut = 0
without loss of generality we set u to zero.

wt ~ N (0,Qt ), vt ~ N (0,Rt )

Pt−1 = E[( x̂t−1 − xt−1)( x̂t−1 − xt−1)
T ]

x̂t−1

x̂t|t−1 x̂t−1Pt|t−1 Pt−1
x̂t Pt x̂t|t−1 Pt|t−1
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Propagation of State

Weighted mean

!xt|t−1
1* = f ( !xt−1

1 ,t −1)True Mean

!xt−1
n+1

!xt−1
2

!xt−1
n+2

!xt−1
0 = x̂t−1

!xt−1
1 v1

v2 Pt-1
q Find eigenvalues and eigen-vectors of covariance         and 

generate (2n + 1) Sigma points

q Propagate the Sigma points through the state equation, 
noting that the process noise is zero mean.

q For these (2n+1) Sigma points, the weighted mean is 
computed:

Pt−1

!xt−1
0 = x̂t−1 : x

!xt−1
i = x̂t−1 + n+κ ⋅σ i ⋅v i , !xt−1

i+n = x̂t−1 − n+κ ⋅σ i ⋅v i
i = 1,",n

!xt|t−1
i* = f ( !xt−1

i ,t −1)+ wt−1, i = 0,",2n

x̂t|t−1,sample = Wi x̂t|t−1
i*

i=0

2n

∑

0

!xt|t−1
n+2* = f ( !xt−1

n+2 ,t −1)

!xt|t−1
2* = f ( !xt−1

2 ,t −1)

!xt|t−1
n+1* = f ( !xt−1

n+1,t −1)

x̂t|t−1,sample
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Propagation of Covariance

Weighted mean

!xt|t−1
1 = f ( !xt−1

1 ,t −1)True Mean

!xt−1
n+1

!xt−1
2

!xt−1
n+2

!xt−1
0 = x̂t−1

!xt−1
1 v1

v2 Pt-1
q a priori covariance is computed as

q The term is not known since we do not know 
the exact state         . However, it is approximated to the 3rd

order with the weighted mean;                 . Therefore, we 
replace                         by the weighted mean, and compute 
the a priori error covariance using the (2n+1) Sigma points.

q Note that the predicted covariance is correct up to the 
second order. For brevity, the subscript “sample” will be 
dropped hereafter.

Pt|t−1 = E[( x̂t|t−1 − xt )( x̂t|t−1 − xt )
T ]

= E[( x̂t|t−1 − f (xt−1,t −1)− wt−1)( x̂t|t−1 − f (xt−1,t −1)− wt−1)
T ]

= E[( x̂t|t−1 − f (xt−1,t −1))( x̂t|t−1 − f (xt−1,t −1))
T ]+ E[wt−1wt−1

T ]

+ (cross− terms)

x̂t|t−1,sample

!xt|t−1
n+2 = f ( !xt−1

n+2 ,t −1)

!xt|t−1
2 = f ( !xt−1

2 ,t −1)

!xt|t−1
n+1 = f ( !xt−1

n+1,t −1)

x̂t|t−1,sample

0 Qt-1
f (xt−1,t −1)

f (xt−1,t −1)

Pt|t−1,sample = Wi
i=0

i=2n

∑ ( !xt|t−1
i − x̂t|t−1,sample )( !xt|t−1

i − x̂t|t−1,sample )
T +Qt−1

xt−1
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Obtaining the Kalman Gain from Innovation Covariance
q We aim to update state and covariance using Sigma points. The standard Kalman gain and 

covariance update laws, however, are not applicable to Unscented Transformation. Instead, we 
will consider an alternative method based on innovation.

q The Kalman Gain is given by , but the matrix Ht is not available for 
our nonlinear system.

q Instead, we use the following formula,

Kt = Pt|t−1Ht
T (HtPt|t−1Ht

T + Rt )
−1

Kt = PxyPy
−1

where Py = E[( yt − ŷt )( yt − ŷt )
T ], Pxy = E[(xt − x̂t|t−1)( yt − ŷt )

T ]

For a linear time-varying system, this new formula can be proven by construction.

| 1 | 1

| 1 | 1

| 1

ˆ ˆ( )( )

ˆ ˆ( )( )

ˆ ˆ( )( )

T
y t t t t

T
t t t t t t t t t t t t

T T T
t t t t t t t t t t

T
t t t t t

P E y y y y

E H x v H x H x v H x

H E x x x x H E v v

H P H R

- -

- -

-

é ù- -ë û
é ù= + - + -ë û
é ù é ù= - - +ë û ë û

= +

!

Combining the above two, the new formula of the Kalman gain is proven. The covariance 
of output y is called “Innovation Covariance”.

Pxy ! E ( x̂t|t−1 − xt )( ŷt − yt )
T⎡⎣ ⎤⎦

= E ( x̂t|t−1 − xt )(Ht x̂t|t−1 − Htxt − vt )
T⎡⎣ ⎤⎦

= E ( x̂t|t−1 − xt )( x̂t|t−1 − xt )
T⎡⎣ ⎤⎦Ht

T − E ( x̂t|t−1 − xt )vt
T⎡⎣ ⎤⎦

= Pt|t−1Ht
T
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State Update

Weighted mean

!yt
1 = h( !xt|t−1

1 ,t)True Mean

!xt|t−1
n+1

!xt|t−1
2

!xt|t−1
n+2

!xt|t−1
0 = x̂t|t−1,sample

!xt|t−1
1

v1,t|t-1

v2,t|t-1

ŷt ,sample

qState and covariance can be updated by applying 
Unscented Transform to the a priori covariance . 

qWe first obtain the innovation covariance by examining 
the distribution of the output created through the 
measurement equation.

qWe compute the eigenvalues and eigen-vectors of the a 
priori covariance, s1,t|t-1, s2,t|t-1, ……, v1,t|t-1, v2,t|t-1, ….

q Then, we generate (2n+1) Sigma points, and estimate 
the mean and covariance of the distribution of output y 
with the Sigma points.

qUsing the deterministic part of the measurement 
function, the Sigma points are mapped to

qThe weighted mean of the Sigma points is given by

Pt|t−1,sample

Pt|t−1,sample
Space of xt|t-1

Space of yt

!yt
2 = h( !xt|t−1

2 ,t)

!yt
n+1 = h( !xt|t−1

n+1 ,t)

!yt
n+2 = h( !xt|t−1

n+2 ,t)
!yt
i = h( !xt|t−1

i ,t), i = 0,",2n

ŷt ,sample = Wi !yt
i

i=0

2n

∑ !yt
0 = h( !xt|t−1

0 ,t)
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State Update

Weighted mean

!yt
1 = h( !xt|t−1

1 ,t)True Mean

!xt|t−1
n+1

!xt|t−1
2

!xt|t−1
n+2

!xt|t−1
0 = x̂t|t−1,sample

!xt|t−1
1

v1,t|t-1

v2,t|t-1

ŷt ,sample

qFrom the Innovation Covariance,

qComputing the first term using Sigma points,

qSimilarly, the cross-covariance is given by

qThe Kalman Gain is then                    . 
qThe state update is given by

Pt|t−1,sample
Space of xt|t-1

Space of yt

!yt
2 = h( !xt|t−1

2 ,t)

!yt
n+1 = h( !xt|t−1

n+1 ,t)

!yt
n+2 = h( !xt|t−1

n+2 ,t)

x̂t = x̂t|t−1,sample + Kt[yt − ŷt ,sample] !yt
0 = h( !xt|t−1

0 ,t)

Py ! E ( yt − ŷt )( yt − ŷt )
T⎡⎣ ⎤⎦

= E (h(xt ,t)+ vt − h( x̂t|t−1,t))(h(xt ,t)+ vt − h( x̂t|t−1,t))
T⎡⎣ ⎤⎦

= E (h(xt ,t)− h( x̂t|t−1,t))(h(xt ,t)− h( x̂t|t−1,t))
T⎡⎣ ⎤⎦ + E vtvt

T⎡⎣ ⎤⎦
Rt

Py = Wi
i=0

2n

∑ ( !yt
i − ŷt ,sample )( !yt

i − ŷt ,sample )
T + Rt

Pxy = Wi
i=0

2n

∑ ( !xt|t−1
i − x̂t|t−1,sample )( !yt

i − ŷt ,sample )
T

Kt = PxyPy
−1
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Covariance Update

q The covariance update formula includes measurement matrix Ht, which must be replaced. 
We can use the innovation covariance for this:

q Inserting                      in the covariance update formula, 

where the Kalman gain                               is used to eliminate the measurement matrix Ht.
q Using the Sigma points, this can be computed as follows.

Pt = (I − KtHt )Pt|t−1 = Pt|t−1 − KtHtPt|t−1
= Pt|t−1 − KtPyPy

−1HtPt|t−1 = Pt|t−1 − KtPyKt
T

Pt ≅ Pt|t−1,sample − KtPyKt
T

PyPy
−1 = I

Kt = Pt|t−1Ht
T Py

−1

Py = E[( yt − ŷt )( yt − ŷt )
T ]
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The Recursive Algorithm of Unscented Kalman Filter

qGiven         and Pt-1, sample sigma points by computing eigenvalues and eigen vectors of Pt-1;
qPropagate the sigma points through the nonlinear model to obtain                                 ; 
qFrom the (2n+1) sigma points compute the mean and variance:

qSample again (2n+1) sigma points for Pt|t-1,sample;
qTransform the propagated sigma points to output estimate based on the nonlinear 

measurement equation, and compute the estimated output

qEvaluate the innovation covariance and the cross covariance by using (2n+1) points of
propagated output estimates to find the Kalman gain

x̂t−1

!yit

!xt|t−1
i* = f ( !xt−1

i ,t −1)

x̂t|t−1,sample = Wi x̂t|t−1
i*

i=0

2n

∑ Pt|t−1,sample = Wi
i=0

i=2n

∑ ( !xt|t−1
i − x̂t|t−1,sample )( !xt|t−1

i − x̂t|t−1,sample )
T +Qt−1

!yt
i = h( !xt|t−1

i ,t)ŷt ,sample = Wi !yt
i

i=0

2n

∑

Kt = PxyPy
−1 Py = Wi

i=0

2n

∑ ( !yt
i − ŷt ,sample )( !yt

i − ŷt ,sample )
T + Rt Pxy = Wi

i=0

2n

∑ ( !xt|t−1
i − x̂t|t−1,sample )( !yt

i − ŷt ,sample )
T
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The Recursive Algorithm of Unscented Kalman Filter

qUpdate the state estimate with the Kalman gain;

qUpdate the a posteriori covariance;

qSet t = t + 1, and repeat the above process.

q No Jacobian, no partial derivatives are needed.
q The estimated covariance using sigma points is more accurate than the Jacobian-based one.
q Caveat! The distribution of random variables after transformed through nonlinear equations, 

e.g. f(x,t), h(x,t), is no longer Gaussian, although the original distribution was Gaussian. 
Unscented Kalman Filter approximates this distribution to a Gaussian and characterizes with 
mean and covariance. Although this approximation is accurate to the 2nd order, the discrepancy 
from a complete Gaussian may grow, as the process is repeated.

x̂t = x̂t|t−1,sample + Kt[yt − ŷt ,sample]

Pt ≅ Pt|t−1,sample − KtPyKt
T

Nonlinear map

No longer Gaussian

Approximate to Gaussian
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qEKF tends to underestimate 
covariance Pt and thereby 
uses a smaller Kalman gain.

qThis leads to an insufficient
correction (update) to the
state estimation.

qSuch an inaccurate state 
estimation further incurs 
inaccurate covariance and 
the situation may smallball, 
leading to a divergence.

qUKF is more reliable
particularly when
covariances rapidly change.
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