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Summary of the previous results on Subspace Methods -1

O System parameter matrices, A, B, C, and D, are
linearly involved in state space representation;
Once states are obtained from input-output data,
it is a simple least squares estimate problem.
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O The Hankel matrix of impulse response is the
product of extended observability and
reachability matrices.
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O Singular-Value Decomposition of Hankel matrix H
gives observability and reachability matrices,
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from which B and C, and then A can be determined.
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Summary of the previous results on Subspace Methods -2

Q Input output data in the Hankel Matrix form

» |nput Data Matrix

U0|k—1 =

u0)  u(l)
u(ly  u(2)
u(k.— 1) u(k)

= Qutput Data Matrix

u(N-1)
M(N) YO|k—1 =
u(k+ N —-2)

O Zero-input response reveals the impulse response
Hankel matrix that is the product of O, and ¢, .
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O Zero-input response can be created from arbitrary
input-output data satisfying the 3 assumptions
through column manipulation of the Hankel data
matrix Woy..

Hankel matrix H 4

u,(0)
,(0)

/

\

U0|k—1

YO\k—l )

0

k=1

O—1

Ok




Summary of the previous results on Subspace Methods -3

O Zero-input response can be created from arbitrary input-output data through column manipulation of the
Hankel data matrix Wy, if it meets the 3 assumptions.
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Rigopo?sue Data Matrix A linear combination of column vectors of the data matrix



Collective Input-Output Hankel Expression

0 From state and measurement equations,

y(t) = Cx(t)+ Du(t)
y(t+1)=CAx(t)+ CBu(t)+ Du(t +1)
Y(t+2)= CA*x(t)+ CABu(t)+ CBu(t + 1)+ Du(t +2)

x(t+1)= Ax(t)+ Bu(t)
« y(t) = Cx(t)+ Du(t)

U These equations can be written collectively,

( ) ( )
o (¢ ) [ b 0o o0 u
y(t+1) _ CA X()+ C.B D | : u(t+1)
: : : w0 :
| ye+k=1 )\ c4M! )\ CA"*?B ... CB D N\ ut+k=1)
YZ(t) pkx1 % pkXxn Ly phk X mk ”k(t) mk X 1
Q Or, succinctly, This matrix is a block

y,)=0x(t)+Y¥ u, () Toeplitz matrix.



O Note that concatenating y, (0) y, (1) --

Y

Collective Input-Output Hankel Expression

= 2O 30

y(N-1) |

Simiarty, Uy, =( #,0) ,(1)

Also, we define X|, é( x(0) x(I)

u, (N-1) )

x(N-1) )

y,(N-1) Yyields the following block Hankel output matrix,

Q The input-output relationship, ¥, (£)=0,x(t)+Y 1, (¢), can be expanded to the block Hankel form,

Y,  =0X,+¥,U
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O This is a succinct expression of the following relationship.
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Three Assumptions on Data

O For constructing subspace identification algorithms, we have to make three key assumptions on data.

y©0) ¥ - ¥N-1) u(0) ul) - uw(N-1)
y(.l) /) . y(.N) :Ok( x(0) x(I) - x(N-1) )"‘LP/( u(.l) ") . ”@
k=1 yk) - y(k+N=2) o4 0 w(k=1) u(k) - u(k+N=2)
Yyt pkx N /g§ ) Yokt mkx N
O Assumption A-1: rank X, = n. X A2 :
The state vector is sufficiently excited, or the system is reachable. Recall 2, ¢(1)p’ (1) = (full rank)
O Assumption A-2: rankU,,, . =mk o' (0)
. (9@ -~ ov-1 )
The input sequence is persistently exciting of order k. o (N =1
: _ Ut | 0) - wu(N-—1
0 Assumption A-3: rank v =mk+n ( u(0) u(N —1) )
0

Xy and Uy, are not collinear. No linear state feedback:

In other words, the spaces spanned by the input matrix and the state matrix do not intersect.

span Xo M span Uo‘k_1 = {0} Experiments should not be taken with linear state feedback, u = Kx.



LQ Decomposition
Q Of particular interest is the input-output pair, u,(0) and y,(0), corresponding to zero-input response:

u,(0) _ 0 _ Uit ¢
y,(0) y*(0) Yooy

Recall Example 18-1.

Note that such an input-output pair can be created by a linear combination of the column vectors of the data matrix.
O We can find multiple zero-input responses by using different vectors ¢
O Under the 3 assumptions on the data matrix, (km+kp) linearly independent vectors ¢ can produce zero-input

responses. Zero-input response
UO\k—l B L11 where £;,45,... can be made orthogonal through
y 41 Cz ;km+kp - I the Householder transformation. These orthogonal
Off=1 ]« \ g 21 vectors constitute orthogonal matrix Q.
0=(0,.0,)

O This can be achieved by column operations, but an effective algorithm, called LQ Decomposition,
exists to transform the data matrix (a rectangular matrix) to a block lower triangular matrix. Namely,

kmxkm pmX pm :
Uo\k_l L 0 QIT where L, € RN and L, € R are lower-triangular.

T
YO!k—l L21 L22 QzT Note QTQ: “ ( 0 0 ):[ o )
0, 0 [/

11



QR Decomposition

0 LQ Decomposition is the transpose of so-called “QR Decomposition”. An arbitrary rectangular matrix 4 € R
can be decomposed to an orthonormal matrix O and an upper triangular matrix in the following form:
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O Matrix Q consists of unit-length column vectors that are orthogonal to each other.
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0 MATLAB code: qr(A), (Q, R)=qr(A) returns an orthonormal matrix Q and an upper triangular matrix of

the above form.

O There are effective algorithms to obtain the QR factorization of a rectangular matrix.
O Gram-Schmidt procedure — numerically not stable
0 Householder Reflection — widely used method



QR Decomposition
= Transpose of LQ Decomposition

( A
R,

4=0r=( 0, 0, )\ ,

0 QR Decomposition Algorithm based on
the Gram-Schmidt orthogonalization
method
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We can now express the a;s over our newly computed orthonormal basis:

a; = <91,31>61
a, = (e1,az)e; + (eg,as)ey

-
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k
. ar =) (ej,ar)e; < ay,€ > € ‘
U u uu j=1 /
hy ===y S> = - 12 ! where (e;,a;) = ||u;||. This can be written in ma(t)rix form: 2 g
|1/l1| ‘l/ll‘ ‘ul‘ 1y A il :
u —a 'I’e ul\\‘l A=QR A:( a4 a4y )
1= a e .
’ [y | . where:
u, = ay — proj,, as ey = —2
2 2 u ’ | HUZH i Q: [ela°°°7en]
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MOESP:
The Multivariable Qutput Error State sPace method

0 From the LQ decomposition:

Yog-1 | Ly 0 o/ - U1 = L0 and
L Ly Ly || O Yypor = Ly O + 1,07
U Recall the collective input-output relationship using Hankel data matrices.
»0)  y@ - N1 C D 0 - 0 w0  u(l) - w(N-1)
y(:l) ¥(2) .. y(:N) _ C:A ¥(0) x() - x(N-1) )+ C:B D ) 0 u(:l) u(2) ) u(f\’)
y(k.—l) y(k) . y(k+}V—2) c4H! \ X, | C4**B ... CB D u(k.—l) u(k) . u(k+}V—2)
N P S ~ 7 9
Yo;c—l % ¥y U0|Vk—1
Or the succinct form Y()\k—l =0, X,+ LPkU0|k—1

O Substitution of the LQ decomposed relations yields

T T T
Y()|k—1 =0 X+, L0 =L,0 +L,0,



MOESP (Continued)

Q Post multiplying 0> to 0, X, +¥,L,,0," =L,,0," +L,,0," vields 0,X,0, = L,,

since QIT ( 0 0, )=[ [0 ]

QzT 0 [
Q Taking Singular-Value Decomposition of L5,
T
>, 0 V1 T T
L22=( U, U, )( O1 0] T =l O X0, =U 2/
2

O Splitting this, we can find the observability matrix given by Ok = UlZi/z
Q The first block of the observability matrix is the matrix C: C=0,(1: p,:)

Q As before, the A matrix can be obtained from O, (1: p(k—1),:)4=0,(p+1: pk,:)
fA=0,(1: p(k=1),:) 0 (p+1: pk,:)

T T T
Q Matrices B and D can also be determined from O X,+Y¥Y L.,Q =L,0; +L,,0,
though computation is more tedious.
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N4SID: (Read “Enforce It".)
Numerical algorithm for Subspace State Space System Identification

O The N4SID method developed by Van Overschee and De Moor [1994] is one of the most prevailing
algorithms for Subspace System Identification.

O This method, too, uses LQ Decomposition and Singular Value Decomposition. However, its data structure
differs from the previous methods, and it applies a different geometric approach, called Oblique Projection.

O The following is the outline of the algorithm.

1 Data structure:

A A A A
Y Ay Up = UO\k—l Y p Y()|k—1 Y 2y Uf B Uk|2k—1 Yf B YkIZk—l
p 70 past f} k future —
{ \A A A > Time
0 _ k-1 k _ 2k-1
Y =0X,+¥,U, Y, =0X,+¥U,
u@) ul)y - u(N-1) u(k)  ulk+1l) - u(k+N-1)
A 1 2) .- N A k+1 k+2) - k+N
U,2Up, = ”(:) ”(:) ) u(:) U, 20, =| " :+) " N ) ) " ' )
u(tk—=1) u(k) - u(k+N-=2) u(2k-1)  uk) - uk+N-2)




Assumptions on Data

O Assumption 1: States visit every dimension.

rank X =rank X, =n
p f

U Assumption 2: Persistently exciting inputs.

UO|2k—1 =

O Assumption 3: No linear state feedback.

span X , span

span X 7 Mspan

U
p

Uy

5

rank

=195,

=19

This block should be zero,
because all the inputs of both past
and future times are zero and the

U
p

Uy

O For a data matrix satisfying Assumptions 1 — 3,
any input-output response can be expressed as
linear combination of the column vectors of the

data matrix:
Uy Uy
N “p, Up
3 eR” such that = ¢
y Y
p p
Yy Iy

—

outputs were 0 in the past time.



LQ Decomposition

O Writing the past data matrix as Up
W = :

P Y

p

we apply LQ Decomposition to the data matrix

Uf R11 0 0 lT fm
W, |=| R, R, 0 ) |kmp) (1)
Y, Ry Ry, 0 3T kp
— ‘ el
k(m+p)

where QiTQJ:O» i# ]

0=( 0, 0, 0, ) :orthogonal

kem>x km k(m+p)xk(m+p) :
R eR Ry eR : lower triangular

O From (1), we obtain three equations:

T
U,=R,)9 (2)
T T
W,=RyQ + R0, (3)

T T
Y, = Ry Oy + 15,0, (4)

Q Since U, is of full rank, R, is also full rank and
non-singular. Therefore, from (2)

T -1
O =/, U, (9)
O Recall the analysis in the MOESP method,

0

L22

L

11
L21

rankR ), = rank =km+n<k(m+ p)

Therefore, R,, is rank-deficit. Using a
pseudoinverse in (3),

QzT = R;#Z(Wp - R21Q1T) (6)



N4SID Method

T T
Y, = Ry Q) + R0, (4)
T _ p-l
O =R, U 1 (5)
T _ pt T
0, = R22(Wp ~ Ry Q) (6)
O Substituting (5) and (6) into (4),

T # T
Yf =Ry 0 + R32R22(Wp - Ry0))

# -1 #
= (Ry = Ry Ryy Ry )Ry Uf T Rsszsz (7)

0 Examine the relationship between U and W,
Recall ¥ =0, X +¥Y U
p TkTp k= p
This implies that Y, is spanned by X, and U,,. In
other words, all the row vectors of Y, are linear

combinations of row vectors involved in X, and
U,. Therefore,

U U
p p

span Wp = span = span ¥
p p

U

Q From Assumption 2, rank Pl = 2km

Uy

This implies no overlap between bases of U, and U

c.spanlU  NspanU , = {0}

0 From Assumption 3: No linear state feedback,

c.spanX’ Mspanl IS {0}

O Therefore, we conclude that
. spanU s spaan = {0}

Q Eq.(7) represents Y as the sum of two terms that exist
in two subspaces having no overlap in their bases.

Y

c=oU+0-W) (8)

"

No overlap in bases: Direct Sum
Q In linear algebra, they are called Direct Sum.



N4SID Method

O We can also find a relationship between O Collectively, this relationship can be expressed as
subspaces spanned by Uyand X, from: ( x(k) x(k+1) - x(k+N-1) )
Yf_Oka+\{lka (9) Xf_A Xp+€kUp (10)
0 From Assumption 3: No linear state feedback \( x(0) x(1) - x(N-=1) )
spanX , spanl/ - = {9} QRecall ¥ =0,X +¥,U,
Therefore, Y, =0, X ,+¥ U ,is a Direct Sum. v
FRRA T X =07(Y -¥,U)
3 Next, check the relationship between X and W, P P P
One of the elements in X, can be written as Substituting this into (10)
_ kA #oy >
u(i) Xf =40, (Yp \PkUp)-l_CkUp
. . _ _ u(i+1 _ gk # > gk
x(k+l):Akx(z)+( 4B 4B . B J (+) =40 Y, + (G- A0 ¥,
é‘ u(i+k-1) d X,is spanned by U, and ¥, or

k
opposite direction of ¢, X . e spanW
f p



N4SID Method

0 So, comparing the two expressions on Y, and examining

the properties of the subspaces, we can find: spanlU 0 spaan =10}
spaan % W
N apin b € span
0 owses spanU 7 //\ f p
# -1 # { span X ,
(7) Yf = (R31 B R32R22R21)R11 Uf T R32R22Wp
Direct Sum
The same
b
subspace IX 7 c spaan Schematic of subspaces
Direct Sum

O The conclusion is that the second

(9) Yf:‘Pka+O X

kK> f term in both equations must be
the same.
No overlap in bases
. _ i
20X = RyRLW,

19



N4SID Method

O Take Singular-Value Decomposition of the right-
hand side

. . #
..Oka = R32R22Wp
; 5 0 W r
Ry, Ry)W :( U, U, ) ! =U 20,
P 0 0 )| VI

2

Q This can be split between Ok and X,

_ p=I12y,T _ 1/2
X, =172, 0, =UzI*T

f

O There are two methods for determining system
parameters, (4,B,C,D), one is based on the
decomposition of X, and the other on Ok . The
following is the former.

O X, contains a series of states:

x(k),x(k+1), -, x(k+N-1)

O Based on this series of states and the input-output
data, we can form the following 4 matrices.

X, =( x(k) - x(k+N-2) JeRmOD
Xpy=( xtetl) o xkaN-1) JeR™ND
Uk|k :( u(k) u(k+N-=2) )e Rm(N-1)
Yk|k = ( y(k) y(k+N=2) ) c RPN-D

O There are related in the state and measurement
equations:

Xk+1 _ ( A B ] Xk
Yk|k ¢ D Uk|k
O This has a unique solution,
_ _ T _ _ T
A B ]_ X Xy k k
C D kak Uk\k Uk\k Uk\k




Comparison between MOESP and N4SID

MOESP N4SID

Mathematical techniques are different.

-
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-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

Projection of X along

‘ a, onto d,
e
5 % 0
Projection of x along @, onto al
Orthogonal Projection Oblique Projection

Almost same performance except for ill-conditioned data
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