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Consistent Estimate / Unbiased Estimate

0, = 6, E[0,]1=6,
a S(;)Igféccllerr]c?islzel.rme Impulse Response (FIR) Model with FIR Model
()= bu(t =)+ byu(t=2)+-++b, u(t—n,)+v(t) —— H(q)
O Suppose that the goal is to identify G(q) only; no need
to identify the noise dynamics: v(t) = H(q) e(t). u(?) W(?)
4 Given a data set: {(u(t),y(t)) 1= 1,--~,N} — G(q) >

O The Least Squares Estimate is given by Finite Impulse Response model

N N N
0y =argmin -3 (0~ p(0 0 =R [%Eya)qo(r)), R= 20000

Q Let g, be the true parameter values; the data are generated by y(f)= gp(t) 0 +v(1)
O Substituting this into the above LSE yields

N N N
6, =R (WZ(W)THO + v(t))qo(t)] _ R %Z«Dmcpaﬁ 6, + k! %Zvaw(r) 9, + R %ZV(W(O
=1 N =1 ) =1 =1

R



Consistent Estimate / Unbiased Estimate

O Least Squares Estimate

N

0, + R Zv({)qp(l‘) FIR Model
| —H(q)
Q If the model is ARX, the regressor o(t) includes y(t-1), y(t-2)...
Therefore, colored noise v(t) may be correlated with the
regressor, leading to Biased Estimate. u(?) y(1)
——G(q) D >

O On the other hand, if the model is FIR:
(1) = (u(t = D,u(t=2), -, u(t=n,))"
y(@)=bu(t—1)+bu(t—2)+---+ bnbu(t —n,)+v(t)
O The FIR’s regressor ¢(t) does not include y(t-1), y(t-2),....

O As long as u(t-i) is uncorrelated with noise v(t),

1 N
ﬁgv(t)qo(t)ﬂ

O Therefore, Unbiased estimate is guaranteed. 6

Y(1)= (1) 0, +v(1)



Pros and Cons of FIR System Identification

Pros
0 FIR and Least Squares Estimate provide Unbiased/Consistent Estimate, although noise v(t) is colored.
6. — 0
N v e 0
Cons

0 FIR tends to have many parameters to identify: n, > ]

Slowly-decaying mode

0=(b,b,, b Y

Impulse
Response 50 ~ 100 parameters

n
»

Time

O Slow convergence
O Difficult to meet Persistently Exciting conditions



Solution

O Time-series data compression is an effective technique for solving this problem.
Direct FIR Data-Compressed FIR

1L,(q)

® » IL,(g)

Filters -

1L, (q)
O Input signals are filtered with a series of special filters L (Q) \
such that the order of FIR may be reduced: I —
n
3k _
(0= Y g0, n<n, L@

u(t)

k=1 ‘
where x (6)= L, (q) u(?) Ly(g)

/ ,
\/ 5




Review of Z-Transform and Complex Functions
(Lecture Notes No0.10, Section 10.2.2)

O Transfer function using time-shift operator, ¢.

- _ . At-s
G(g)= Zg(k)q g Time delay 2> € At = sampling interval
k=0
—At-sk
()= G(q)u(t) —~ Llyl= Y g(k)e ™™ L[u]
Laplace Transform =0
U Replacing oS by z, we have the z-transform of the transfer function:
G(z)= 2 g(k)z_k ........ a complex function of z = e"**
=0 Zero N
Q Poles and Zeros G( ) bIS + b2
. | B §) =
Zero: a complex number z; that makes transfer function G(z) zero: G(Zi) =0 )2'_'_ as+a,
Pole: a complex number z; that makes transfer function G(z) infinite: G(Zj) =00 Poles




Bounded-Input, Bounded-Output Stability (BIBO)

e /\ /\A/\/\ /\\AA/\ , u(t) | Linea Time-Invariant y(t)% +C1.A/\/\/\/\/\

_ ! A System Y VAR VAR
’ WV\/\M] ——————— lu(t)|<c V¢ Iy(t)ISc'v © l -----------------------
[

Theorem

Transfer function G(q)= Eg(k)q_k is BIBO stable, if Z |g(k)|<eo
k=0 k=0

Proof

(e ]

() | Y glhou(t— k) < ' |g(byu(t -k = Y| g(){u(t— k) < Y| g (k) -c <
k=0 k=0 k=0

k=0

Therefore, for any bounded input sequence, the output is bounded.

lu(t)|<c Vt



Poles of BIBO-stable systems
O Associated with G(q), consider

G(z)= 2 g(k)z_k If poles exist, they
k=0

must be within the

Complex Plane

_ unit circle. /// 9 7
_ z|>1
men  1G(2)|< Y gk |z 2
k=0

QIf G(q) is BIBO stable, for |z |_1§ 1 (|z|=1])

1G(z)|< ) | g(k)|< oo S-plane
k=0

O This implies that there is no pole on and outside the unit circle.

Q Treating G(z)= Eg(k)z_k as the Laurent Series Expansion* of X
a complex function, the above results mean that the complex

function G(z) is analytic on and outside the unit circle. 5

* This function includes terms of negative degree to which Taylor series expansion cannot be applied.



15.2 Continuous Time Laguerre Series Expansion
(Bilinear Transformation in Signal Processing)

Theorem 1. If a transfer function G(s) is

1.Strictly Proper, that is, a zero exists at s =c0, lim G(s)=0

§—>o0
G(s) = N(S)  The order of polynomial
D(s D(s) is higher than N(s).
( ) S-p| X Im ////
-plane
2. Analytic in the right hand plane, and % No Pole
=z
. : X
3. Continuous in Re[s]=0 . :
Then, there exists a sequence {g, | X / Re
such that ) _ o /
N2a (s—a % /
G(s)= ng —
— Stals+a
where g > () is a positive constant, called a Laguerre pole.
9



Proof

S+ a
Z:

)

S—d

Pick s on the imaginary axis

S Z

s+a
s+l _,

2]

|s—a|

Consider a complex number - to - complex number transformation

This is called a bilinear transform.

Pick s on the RHS

s+a
u>1

|z R ——
|s—al

— —
-

S|

|s+ |_l

— =1 for s=jw
s—a

Zz=L(s+a)—L(s—a)

v

Im

-1

_ /

‘S+(7‘

s~

i The
mapped to the unit circle.

imaginary axis

> 1

This bilinear transformation preserves stability and phase.

1S

/

The right half plane is
mapped to the outside of
the unit circle.



S+a

The inverse transform of z = —,
S—a
_ _ _ z+1_
(s—a)z=s+a, (z—Ds=(z+Da, ..s= 1az
Z —
o z+1_
Substituting S by " a yields
Z —

Z_

G(s) = G[“iajé G(2)

Example 1

Obtain G(z) for the following G(s).

1
- (s+1)(s+2)

G(s)



S+a

The inverse transform of z = —,
S—a
_ _ _ z+1_
(s—a)z=s+a, (z—Ds=(z+Da, ..s= 1az
Z —
o z+1_
Substituting S by " a yields
Z —

G(s) = G[“iajé G(2)

-
Example 1

Obtain G(z) for the following G(s).

1 1
“O= et (211 1
(s+1)(s+2) z+ Z 1 zZ+ -
z—1 z—1
_ 1\2
C_;(Z) (z—1)

T[@+Dz+a-1[@+2)z+a-2]



Proof of Theorem 1 continued

O From the assumption, G(s) is analytic in Re[s] > 0.
Therefore, (G(z) is analytic outside the unit circle.
[ This implies that G(z) must be expressed as a Laurent

Expansion

— > —k
g} suchthat G(z)=) gz
k=1
U From the assumption, G(s) is strictly proper:
Azeroexistsat s =co, lim G(s)=0 B

_ s, . Sta
0 How about G(z) ? Notethat limz=lim =1

B §—o0 s §— (]
d Namely,atz=1, G(z)=0 . This implies that
(z-1) must be a factor of G(z).

G(z)=(z-1)G'(2)=z(1-z)G'(z)=z(1-z7")- D) g,z "
k=1

:1\722_5 i—k(s_cjj“:@igk(s_a}“ QE.D.

s+a i s+a




The Catch

O Our objective is to reduce the order of FIR model; a slowly decaying pole prolongs the
convergence of impulse response. Such a pole is located near the origin or the imaginary axis.

Im Im
Impulse

Response ‘ ||| 50 ~ 100 parameters ) a=-p \
A—X ’ s =
|‘ ||||||||||||||IIIIII|||||; P, D Re Qg/ Re

Time

O The slow pole can be relocated by using the bilinear transformation. If we set the Laguerre pole
at the slow pole: a = —p, s+ s—p,

z=—"7— 2 =2 gmp =
S—a s+ p,

=0

S=p,

O With the slow pole being mapped to the origin in _
the z-plane, the system’s impulse response in the G(z) Converges quickly
z-plane converges instantaneously. Furthermore,
if other poles in the s-plane are close to p,, they Can be truncated to a low-order FIR.

are mapped to a region away from the unit circle
in the z-plane.

14



Review of UG Classical Control: Impulse Response _ _
Diverging, unstable

| Marginally Stable
Slow

n
=

Im A /
S-plane /

Re S~

Marginally Stable
Fast

15
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Applying the Laguerre Series Expansion to FIR model compression

. Im N In the z-plane, all the poles
. Im are confined within a small
i J1 circle of radius r << 1.
X o
! Dominant Pole 7
x : x"/ » - KNZX ‘ :
p2 ipl Re \&j Re
x  —a
X
| 1
If there are many poles are involved, we pick G(z) can be approximated to a low-order FIR. -
the Laguerre pole near the dominant pole, that In's, we can write G 2a( s—
is, the pole closest to the imaginary axis in the ’ (s) = Z kergl s+g

s-plane. .
where n is small.

16



Example 2

Compress the impulse response of the following transfer function using Laguerre Series Expansion.

1

G(s)= PR The poles in the s-plane are: s = -1, repeated poles.
(s+1)
Using the inverse bilinear transformation, N K
z+1 Im

Im
S=a a==Ps \
—_— / ’
z-1 P ~

> v, S &
the transfer function in the z-plane is given by D5 Re QQ Re
2 ’ ’
= (z=1)

G(z) = : |
[((a+1Dz+(a—-1)] With a =1,
a—1 (z—-1)* 22—2z+1
The poles in the z-space are: 215, = — G(Z) — 5
’ a+1 [22] 4z
Repeated Poles
1 1 1 -

Setting the Laguerre pole at a = 1, we can shift both poles to = Z — EZ -1 + — 1 Z 2 Finite!

a2=0

Converges at the 2" order 17



Example 2 continued

The Laguerre Series Expansion converges at n = 2.
_ _\k-1 — — _
1 ., 1 5 G(s) 22:_ V2a (| s—a _ \/2a+_ V2a s—a
t+—z° =) G(5)=) g — — =& —T8 — —
“ks+als+a 's+a “*s+as+a

_
G(z)=~——
(2)=4737 "%

A

:L >
un) [TH 18 X0 o N
B vk

" Lz(Q) "85 e
P Re Qz
L(g)= \/2_61 \ Just find 2 parameters.
s+a . | 5
2d s—a | GS)=—= it §1=—2,§2=——2
(s+1) 4 4
18

L —
Z(Q) s+as+a



Example 3

Find the Laguerre pole that effectively compresses the impulse response of the following transfer function

| [ Im
G(s)=
(s+1)(s+2) , ! 1 1
_ 3 A EANEE
The poles of G(z) AA o BeOl Re
\\ y;
_asl a2 S
2= a+1’ 72 - a+? Best among the four cases
| Case | a |z | .z, | legend
1 1 0 1/3 X
2 1.5 -1/5 1/7 @)
3 2 -1/3 0 O
4 5 -2/3 -3/7 A

a—?2
a—+2

a—1
a+1

5

a>0

| |

a’ = argmin max{



15.3 Discrete-Time Laguerre Series Expansion

[Theorem 15.2]
Assume that a Z-transform G(z) 1s

e Strictly proper G(0)=0
e Analyticin |z{>1 RHP

e (Contmuous m |z| >1

Then

6()=3. 8~ =]

—m Zz—a\ z—a

where -1<a<1 and

K=\(1-a®)T T = sampling Interval

w—azw=z—a w+a =z(aw+1) therefore, z =

Consider the bilinear transformation:

z—d

w=
l1—a:z

w+a

aw +1

Transformation
A z—d A
z-plane W= . w-plane

\ 4

A
NIV N -

aw +1
el
|

20




w+a

G(w) = G[ ) 1s analytic in M > 1, and 1s proper G(0) =0

aw+1

: I = 1
Ilmw=—— G(——)=0
z—® a a Transformation

4 _z-a
z-plane " w-plane

G (w) = %(a - w_l)z gkw_(k_l)
k=1

K z—a o 1—az \

@ K (l_azjk_l |Z‘>1 .\M
a

l-az
z—a —az & z—a Y
R e e A

Now we can write
y(t) = G(q)u(r)

- k-1

. K (l-a L

=> 2 ( q] u(t) = gLy (qQu(r)
k=1 4d—alqg—a k=1

21




Now we can write
y(t) = G(q)u(t)

Furthermore, x,(7) can be computed recursively.

k- K Kq-l
n £ " x,(t) =L, (q)u(t) = u(t) = —u(?)
_ K (l-aq _ ! : 1—a 1—aq™
=2.8 u(t) = D gply(q)u(r) : 1
kz=1: kq-a(q—a] Z:‘”
x,(t) —ax;(t —1) = Ku(t —1)
x, =L (qu(t), k=1,---,n x, (1) = ax;(t — 1) + Ku(t —1)
6 () =L () = L% 5 (1)
X, q—a I —aq
. Ll (q) 181 ‘ , . ‘
u(t) x, y(t) x, () —ax,(t—1) =x,(t - 1) —ax,(?)
:Lz(Q) | 182 x, (1) = ax,(t—1) + x,(t — 1) — ax,(¢)
X ' x,(t)=ax, (t-1)+x,_,(t—1)—ax,_,(?)
: L” (q) - Er Recursive Filters

22



