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Reflection
• Modeling and representation are the 

foundation of engineering;
• Control engineering made 

groundbreaking progress, whenever 
new model representation methods 
were introduced;
– Frequency-domain representation
– State-space representation, etc.

• Linearization of nonlinear dynamics 
through “lifting” could be one of the 
new representations leading to 
groundbreaking progress.
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Cover’s Theorem
• The use of non-linear kernel methods in 

machine learning: Given a set of training data 
that is not linearly separable, one can with 
high probability transform it into a training 
set that is linearly separable by projecting it 
into a higher-dimensional space via some 
non-linear transformation, 1965.

Thomas Cover

ϕ(x1,x2 ) =
x1
x2
x1x2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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https://en.wikipedia.org/wiki/Linearly_separable
https://en.wikipedia.org/wiki/Higher-dimensional_space
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qConsider a discrete-time, autonomous dynamical system:

qAlso, consider output functions, called observables:                       , 
and their trajectories:

qDefinition (Discrete-time Koopman Operator)     
Let observable be in an element in a Hilbert 
space H . The Koopman Operator associated with 
the map is defined to be a linear transform that 
meets the following compositional relation:

qNote that this transform acts on functions, i.e. trajectories.
qAlthough the original system represented as a point-wise

transformation is nonlinear, the above Koopman operator is linear.

Koopman Operator

5

K :H→ H

g1
g2 g3

Koopman Operator

Infinite-dimensional and Linear

Kg1 Kg2 Kg3

x(t +1) = F(x(t))

Kg(x) = g ! F(x)

g(x) :ℜn →ℜ

x ∈ℜn , F :ℜn →ℜn

gi (x(0)), gi (x(1)), gi (x(2)),!

F :ℜn →ℜn

g(x) :ℜn →ℜ
KF:H→ H

∀g ∈H

(Non-singular)
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Comparison between Evolution Operator and Koopman Operator

gi (x)gi (F(x))

q Evolution Operator

g ! F = K g

g1(t +1)

!
gm(t +1)

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
=

g1(F(x(t))

!
gm(F(x(t))

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

q Koopman Operator

gi (1)

gi (2)

!

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
=

gi (F(x(0))

gi (F(x(1))

!

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
=

k11 k12 "

k21 k22 "

! ! #

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

gi (0)

gi (1)

!

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Trajectory of
ith observable



q Suppose that we use m observables,                           . 
q Collecting data for time 0 through m,

q The relationship between Z1|m and Z0|m-1is described with a Companion matrix Cm. and a 
residual r.
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Z1|m
T = KmZ0|m−1

T
Z0|m−1 = Z0 ,Z1,!,Zm−1( )∈ℜm×m

Z1|m = Z1,Z2 ,!,Zm( )∈ℜm×m
Zt =

g1(t)
!

gm(t)

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

g1(1) g2 (1) ! gm(1)
g1(2) g2 (2) ! gm(2)
" " " "

g1(m) g2 (m) ! gm(m)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

0 1 0 ! 0
" 0 1 # "
" # # 0
" " 0 1
c0 c1 c2 ! cm−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Cm
! "#### $####

g1(0) g2 (0) % gm(0)
g1(1) g2 (1) % gm(1)
& & & &

g1(m−1) g2 (m−1) ! gm(m−1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Km ↔ Cm

Computation of Koopman Operator Using a Companion Matrix 
g1(t),!,gm(t)
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q In general, the last row is an approximation with some residual ri. 

gi (m) = c j
j=0

m−1

∑ gi ( j)+ ri , i = 1,!,m

g1(m) g2 (m) ! gm(m)( ) = c0 c1 ! cm−1( )
g1(0) g2 (0) ! gm(0)
g1(1) g2 (1) ! gm(1)
" " " "

g1(m−1) g2 (m−1) ! gm(m−1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

q The squared residual        can be minimized by optimizing the coefficients ci. R2 = ri
2∑

(c1,!,cm ) = arg minc1,!,cm
gi (m)− c j

j=0

m−1

∑ gi ( j)
⎛

⎝⎜
⎞

⎠⎟i=1

m

∑ 2

q The magnitude of represents the accuracy of the approximation.
q Now an interesting question is whether R2 converges to 0 as m tends to infinity for all 

initial conditions. If all observables gi are in a Hilbert space, where all Cauchy sequences 
converge within the Hilbert space, this residual sequence, too, converges.

R2

q The last row of the above equation:
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So far, exact linear models have been 
found for
• Hamiltonian systems discussed in

the original paper by Koopman;
• Nonlinear autonomous systems with

a single equilibrium, a single
attractor / limit cycle, and a single
torus.
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Koopman Eigenvalues and Eigenfunctions

qThe temporal behaviors of observables can be represented with the 
Koopman eigenvalues, eigen-functions, and modes.

§ If one of the eigenvalues is greater than 1, that mode diverges; 
§ Those modes of |lj |<1 converge; and 
§ The one on the unit circle evolves on an attractor (limit cycle).
q Truncation based on eigenvalues. Fast decaying modes can be eliminated.

g(xk ) = λ j
kϕ j (x0 )

j=1

∞

∑ v j

Eigen-function:
Bases spanning the function space

Mode:
Representing the observable 
w.r.t. eigen functions

q From the companion matrix we can obtain eigenvalues and eigen
vectors of Koopman operator – empirical Ritz values and Ritz vectors.



11

Drawbacks and Open Questions of the Koopman Operator Theory

q Koopman Operator for exact linearization is applicable only to autonomous systems with 
no control input.

q For exact linearization, the system must be lifted to an infinite dimensional space.

q There is no systematic method for finding an effective set of observables. Typically it 
requires a trial-and-error effort to find a good collection of observable functions.

Goals and Needs for Research
1. Establish a methodology of lifting linearization for non-autonomous systems;
2. Keep the order of a lifted system low, yet accurate enough to predict the true 

dynamic behavior over a required period of time; and
3. Make the lifted dynamic system causal and physically meaningful.



Goal: Linearized State Equations

x x
d
dt hh= + +
x

A x A B u

dx
dt

= f (x,u)The original nonlinear state equation:

Lifting

dη
dt

= Hxx +Hηη +Huu

x
η

⎛

⎝
⎜

⎞

⎠
⎟

Independent State Variables

Auxiliary Variables (observables)

x ∈ℜn

η ∈ℜna

12
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Ad hoc methods do not work for non-autonomous systems

qConsider the following non-autonomous system with input u.

!x = ax3 + bux

η1 = x
3, η2 = ux

qPick the following auxiliary variables (observables) for linearizing the state equation.

!x = ax3 + bux → !x = aη1 + bη2
q In lifting h2, the time-derivative includes the derivative of input u, which is not causal.

d
dt
η2 =

∂η2
∂x
dx
dt

+
∂η2
∂u
du
dt

= u !x + x !u

This cannot be used as part of state equations.

dx
dt

= f (x,u) Example



Dual-Faceted Linearization

x x
d
dt hh= + +
x

A x A B u

dη
dt

= Hxx +Hηη +Huu

Valid
Time 
Horizon

Time

Independent 
state 
variables

PlantControl

Control Design
Real-time computation, implementation

;  Exact, No Approximation

;  Lowest dimension, minimum order

Application: Model Predictive Control
14

• Accurate; and
• Low dimension

qA systematic method for finding causal observables / auxiliary variables 
for lifting linearization of non-autonomous systems.



Outline

• Bringing a physical insight into the selection of 
observables / auxiliary variables;

• Physical system modeling;
• Definition of auxiliary variables;
• Linear regression of the auxiliary state equations;
• Numerical examples;
• Application to Model Predictive Control; and
• Comparison to Koopman Operator
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From the Semi-Plenary Lecture by Harry Asada
2017 American Control Conference

Seattle, May 26, 2017
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Basic elements, like mass, spring, and dampers, 
are linearly connected in all dynamical systems.
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Gustav Kirchhoff
1882-1887

Bernard Tellegen
1900-1990

Electric Circuit Theory
(Physical Network Theory)

Kirchhoff’s Voltage Law
Kirchhoff’s Current Law

Tellegen’s Theorem
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effort : e

flow : f

Force; Voltage; Pressure

Velocity; Current; Flow Rate
Causality

Subsystem: A Subsystem: B

Bi-directional energetic interactions
Formal (NAE photo) Casual/Natural

Principle of 
Physical System Modeling

Professor Henry M. Paynter, MIT
(1923 – 2002)
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( ) 0Ie t e e- - = ( ) 0dfF t m e
dt

- - =

Kirchhoff’s Voltage Law Newton’s equation of Motion
21All the junction conditions are linear.



Newton’s equation of Motion

F(t)−mdf
dt

− e1 = 0

Nonlinear spring:
Force is a nonlinear function 
of Displacement.

Element’s 
Constitutive Law

Note that, if you do not replace 
force e by the nonlinear constitutive 
law with displacement q, the 
equation is linear.

22

Displacement

Force



Definition (a complete set of auxiliary variables):
Output variables of all the nonlinear elements

1

1 1

2 2

1 1

2 2

I

I

R

R

e C
f I
f I
e R
f R

h

æ ö
ç ÷
ç ÷
ç ÷=
ç ÷
ç ÷
ç ÷
è ø

!
!
!
!
!
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Output variables of all the nonlinear elements:

1

1 1

2 2

1 1

2 2

I

I

R

R

e C
f I
f I
e R
f R

h

æ ö
ç ÷
ç ÷
ç ÷=
ç ÷
ç ÷
ç ÷
è ø

!
!
!
!
!

• With these auxiliary variables, all the junction conditions 
(KVL, KCL) can be written as linear equations.
• If any auxiliary variable is missing, then some junction 

conditions cannot be written as linear equations.
• Therefore, this set of auxiliary variables is the minimum 

set for obtaining an exact linear dynamic equation. 24



, ,an nn n n r
x xh

´´ ´ÎÂ ÎÂ ÎÂA A B

Theorem 1
State equations of a nonlinear lumped-parameter system that 

possesses a Bond Graph of integral causality and that contains n
energy storage elements,      nonlinear elements, and r sources or 
exogenous inputs can be expressed as a linear equation in terms of n
state variables,          ,        auxiliary variables,          , and inputs,        , 
as 

where.

an

nÎÂx an anhÎÂ rÎÂu

x x
d
dt hh= + +
x

A x A B u

No algebraic problem occurs.
25



( )h h= x x x
d
dt hh= + +
x

A x A B u

A naïve method; Take Taylor expansion and evaluate the Jacobian at a point.

* If an auxiliary variable is explicitly dependent on input u, we have to treat it differently.

*

( )h = × @ ×J x x J x! ! !

x x
d
dt hh= + +
x

A x A B u

x x
d
dt h
h h@ × = + +J x JA x JA JB u!

26

J(x) = ∂η
∂x
, J = ∂η

∂x x
where



Let us first assume that all the auxiliary variables are causal, 
independent of input u, that is,

We apply statistic linearization to the time derivative of the 
auxiliary variables: Linear Regression.

( )h h= x

ˆ
x uhh h= + +H x H H u!

2ˆ( , , ) argmin | |x u Eh h hé ù= -ë ûH
H H H H ! !"

x x
d
dt hh= + +
x

A x A B u

27



ˆ
x uhh h x= + + =H x H H u H!0 2ˆargmin | |E h hé ù= -ë ûH

H ! !

where                                          ,

Using the standard least squares estimate:

Data matrix

( , , ) an
x uh

´ÎÂH H H H !"

0 1( )T TE Ehx xx -é ù é ù= ë û ë ûH !

1, an n rx h ´

æ ö
ç ÷ÎÂ = + +ç ÷
ç ÷
è ø

x

u

!" !

{ }1 2, , , Nx x xX = !
28



The data matrix                                 must satisfy:
• Persistent excitation;
• No feedback: x and u are not correlated; and
• All the elements are nonlinear.
Note:  If some elements would have linear constitutive laws, 
the auxiliary variables would be collinear with the state 
variables, making matrix             singular.

0 1( )T TE Ehx xx -é ù é ù= ë û ë ûH !

{ }1 2, , , Nx x xX = !

TE xxé ùë û

1x h ´

æ ö
ç ÷ÎÂç ÷
ç ÷
è ø

x

u

!"

( , , ) an
x uh

´ÎÂH H H H !"ˆ
x uhh h x= + + =H x H H u H!
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Theorem 2
The linear regression based on statistical linearization using 
data matrix        provides more accurate estimate of     than 
that of a fixed Jacobian   .  

Proof :                is a special case of H;     

( )h = × @ ×J x x J x! ! !

2 2min | | min | |
n n na a
E Eh x h

´ ´ÎÂ ÎÂ
é ù é ù- £ -ë û ë ûH J

H Jx
!

" " "

x=Jx H! x xhé ù= ë ûH JA JA JB

X  h!
J

ˆ

( , , )

x u

x u

h

h

h h

h x

= + +

æ ö
ç ÷= =ç ÷
ç ÷
è ø

H x H H u

x
H H H H

u

!
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Reconsider State Variables
If a system is linear, transformation of state variables does 
not change the structure of state equations.
For example, 

F = - k x    -------- Linear spring
The state equation using x and the one with F are basically 
the same.

2d x
F m

dt
=

2

0d x
m kx
dt

+ =

2

2 0m d F F
k dt

+ =

31



Reconsider State Variables
F = - k x    -------- Linear spring

The two state equations are basically the same.
It is not the case for a nonlinear system with a 

nonlinear element constitutive law.
F = -a x - b x3  ---- Nonlinear spring

The state equation in terms of F and the one with x differ in 
representation, exhibiting different facets of the nonlinear 
system. 3 0mx ax bx+ + =!!

2

( )

'( ) "( ) 0

( ), ( )
n

n
n

mg F F mg F F F

d F
x g F g F

dF

+ + =

= =

!! !
2d x

F m
dt

=
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Viewing a nonlinear system from two sets of variables, we 
can obtain a richer representation of the nonlinear system.

( , , )d
g x u

dt
h h=

Nonlinear 
System

x x
d
dt hh= + +
x

A x A B u

Independent
State

Variables

Auxiliary
Variables

33Linearize this



x x
d
dt hh= + +
x

A x A B u
dη
dt

= Hxx +Hηη +Huu

Nonlinear 
System

~ Linear ~ Linear

Nonlinear 
Coordinate 

transformation

( )h h= x
34
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Simi-autonomous excavator

Fully-autonomous Dump Trucks

Cloud

36



Hydraulic System
Soil-Bucket 
Interactions

Nonlinearity is everywhere.

Filippos
Sotiropoulos
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bl
e

Deviation 
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Application: Model Predictive Control
Oyama, Yamakita, Asada, “Approximated 
Stochastic Model Predictive Control using 
Statistical Linearization of Nonlinear Dynamical 
System in Latent Space”, CDC 2016
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Application to Model Predictive Control

• Optimal control over a finite time horizon;
• Execute the optimal control for the current 

timeslot only;
• Repeat the computation of optimal control over 

the succeeding time horizon.
Time Horizon, T

Time

state 
variables

42

V = x(τ )T Qx(τ )+ u(τ )T Ru(τ )( )
t

t+T

∫ dτ + (Terminal Costs)

Minimize

Subject to 
dx
dt

= f (x,u)



Nonlinear Model Predictive Control

• It is hard, very hard for real-
time applications.

• Direct Collocation Method, 
etc. Effective solution 
algorithms for solving 
nonlinear optimal control 
problems

• Computationally expensive; 
Curse of Dimensionality

• Local minima problem
43



MPC using Dual-Faceted Linearization

• Linear MPC is a convex optimization problem:
– No local minima problem
– More than 100 times faster than nonlinear MPC 

(Direct Collocation Method)
• High accuracy approximation over a finite time 

horizon

x x
d
dt hh= + +
x

A x A B u dη
dt

= Hxx +Hηη +Huu

Time Horizon
Time

state 
variables

44

Simulation Comparison
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g82(x8)g81(x8) g8m(x8)

x8

g12(x1)g11(x1) g1m(x1)

x1

Koopman Observables

qUsed Radial Basis Functions 
for observables.

qFor each state variable, we 
defined 25 RBFs.

qThe order of the system is 
8.

qTotal 200 RBFs. The system 
order 208.



Lifted State Feedback better informs the controller

• For a linear system, feedback of additional variables 
does not make sense;

• However, for a nonlinear system, the use of auxiliary 
variables may better inform the controller;

• In fact, DFL-MPC outperformed nonlinear MPC.

46

PlantControl

Auxiliary 
Variables

( )h h= x

(Velocity)

(Force)



Lifted State Feedback better informs the controller

47

PlantControl

Auxiliary 
Variables

( )h h= x

(Velocity)

(Force)

V* =
x(τ )
η(τ )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

T

Q*
x(τ )
η(τ )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+ u(τ )T Ru(τ )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟t

t+T

∫ dτ

Q* = Q 0
0 0

⎛

⎝
⎜

⎞

⎠
⎟ , Q* =

Q Qxη
T

Qxη Qηη

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Standard

Augmented Cost Functional
LQR solution

u(t) = −Kxx(t)− Kηη(t)



DFL with augmented cost functional

Lifted State Feedback better informs the controller



Summary of DFL-MPC
• Based on physical modeling theory, low-dimensional lifted 

linear state equations have been obtained for non-
autonomous systems.

• Those observables, or auxiliary variables, are physically 
meaningful, and may be measurable.

• Augmented state feedback with auxiliary variables can 
better inform an optimal controller.

• DFL is particularly useful for Model Predictive Control for a 
finite time horizon, where DFL provides accurate 
prediction.

• Linear representation of nonlinear dynamics opens up 
new possibilities and challenges:
– Observability and controllability of lifted dynamical systems
– Observer design for augmented state feedback
– Conversion of non-convex optimization to convex optimization
– Approximation error analysis

49

Nonlinear 
System

~ Linear ~ Linear

Nonlinear 
Coordinate 

transformation



Conclusion of 2.160:
Identification, Estimation, and Learning
• The cross-disciplinary field of system 

dynamics, statistics, and machine learning is 
an exciting, emerging area.

• System identification, state-parameter-
function estimation, and supervised learning 
can be studied in a cohesive manner.

• I hope that you will find the materials of 2.160 
useful for your future work.
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51While the merry bells keep ringing


