2.160 Identification, Estimation, and Learning

Part 2 Estimation

Lecture &

Continuous-Time
Kalman Filter

H. Harry Asada - ol
Department of Mechanical Engineering UAV Inertial Navigation with Kalman Filter
MIT




Recap The Flow of the Discrete Kalman Filter Algorithm
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Recursive Formula of Discrete-Time Kalman Filter

X0 Initial Conditions Pl|0

State Propagation Covariance Propagation
_ T T
flf 1 Af -1 Pt+1|t _AtPtAt +GtQth
Y =HXy = HAx_, t=1l1
r=1+1
xt=xt|t_1+Kt[yt—yt] P=(U—-KH)P i1
State Update Covariance Update

—1
K, =P, H'(HP, H' +R)

tlt—1 t* tl—1



On the Kalman Gain K =P HtT(H P, H'+ Rt)_l

tlt—1 tT 17"t

d Post-multiplying H P HT + Rt

|
T T
Kt(HtEV—lHt + Rz) — Pz|t—1Ht )

1 From the covariance update law E = ([ — Kth)E
KHP _ =P, —P

t* tl—1 tlt—1 t

t—1

1 Substituting this into (*)
(P

T T T
1~ PH] + KR =B, \H] — Bl — RHT + KR = Bl

, _ T -1
~. K, =PH'R

1 The Kalman gain is proportional to the inverse of the measurement noise covariance R_1
and the posteriori prediction error covariance Pt :



Kalman Filter: Continuous v.s. Discrete Time

Continuous Time Discrete Time

Linear Time-Varying System

dx
State Equation Z =F(@)x(t))+ G({)w(r) X = Ax, +Bu, +Gw,
=Hx +v
Measurement yv(t)=H()x(t)+v(r) Yi e TV
Equation
State update —X(Z) F@)x()+ K(O)[y()— y(8)] X, =A4,_x,_+K [y -]

& propagation

B=(U-K,H)E,_
Covariance .update The Riccati Differential Equation ammm 7 T
& propagation ])t—|—1|t - AtPtAt + Gth‘Gt

\

X1 T X

T p —1
> At Kr = Pth Rt

IIZ



Converting system representation from discrete time to continuous time

State Equation

Y1 X = F(t)x(t)+ G()w(e)

At

Modeling of noise

J Comparing the continuous time and
discrete time systems, we find that
the process noise going through the
continuous time system is integrated,
while the one through the discrete

time system is not. Therefore,
t
w, = w(T)dT = wW(t)- At
=] m@ydT = W)

1 On the other hand, there is no such
difference for measurement noise: v,
is merely the time average of v(¢).

1 ¢t _
v, = r t_Atv(T)dT =V (1)

X, =+ F@)At)x, + G(1)At w(t)
4 3y 3

G(t)—e

Continuous

Discrete

A %%
At Gt [
Integration
: - w(2)

X(1) x(1)

J H(t)—e N0
A(2)
Vs
L ime Delay )ft Ht o
Vi
4,

No Integration



Noise Covariance in Discrete Time and Continuous Time Representation

d Measurement noise in discrete time v, is the time average of continuous time noise v(¢) over

sampling interval Az. 1
v, = A I_Atv(’c)df =v(?)
(d Based on this, the covariance of measurement noise is related to the one in continuous time
> T t 1 | 5(t) Dirac’s delta function
R=Elvy/1=E|[| vw (thdrdr'—
—At At 0 Area=1 )
= j< r Elv(tw! (¢ )]dr >d1'— j R(7) er = If_z(t)AtL = 1’_€(t)i
AL A2 —At A2 A2 At
R(T)5(T —1")

J

[ Similarly, we can find the relationship between the process noise covariance in discrete
time and the one in continuous time.

O = Efww!1=20(1)- At where Q(t)—— j O(t)dt

1—At



Combining the Covariance Propagation Law with the Covariance Update Law

d The correspondence between discrete time terms and the continuous time terms can be
summarized as follows.

_ 1 _
A, =1+F(1)- At H, = H(1), R = R(1)-, 0, = O(0)- At, F, = P(1)
 Therefore, the Kalman gain is expressed as:
T p—1 T -1 T —1
K =PH R =PH R (t)-At=K(t)At where K(t)=P()H ()R (1)
1 Covariance propagation and covariance update laws can be combined:

T T T T
P, =APA" +GOG = A(I-KH)P, A" +G,0G

t+1)t tlt—1“"1



Combining the Covariance Propagation Law with the Covariance Update Law

d The correspondence between discrete time terms and the continuous time terms can be
summarized as follows.

_ 1 _
A, =1+F(1)- At H, = H(1), R = R(1)-, 0, = O(0)- At, F, = P(1)
 Therefore, the Kalman gain is expressed as:
T p—1 T -1 T —1
K =PH R =PH R (t)-At=K(t)At where K(t)=P()H ()R (1)
1 Covariance propagation and covariance update laws can be combined:

T T T T
P, =APA" +GOG = A(I-KH)P, A" +G,0G

t+1|t te—1°"¢
d Using the above relationships, we can convert the combined covariance propagation and
update law in discrete-time into:

P, =+ FOAYI—At- K(OH()E,_ (I+F()A) +GOOMNAG (1)

[t~

=P ,+At-F@)P

tit—1

1 —AC-KOHOPE, | + PAHFT (1) At

+ G(1)O(t)At G (¢)+ (higher order small quantities)



P =P . +At-F(t)P

t+1)t tit—1

—At-K(OH(@)P FT(t)At

tit—1 tt— T t|t 1

+G()OOAGT () + (higher order small quantities)

1 Moving P|t 1 tothe left hand side and divide both sides by At

e Af" L= F()P, ,+ P, FT ()~ K()H()P, , + GO G (1)
Qas Ar—0, lim P, . =P = P(¢)

Ai—0 LT



P =P . +At-F(t)P

t+1)t tit—1

—At-K(OH(@)P FT(t)At

tit—1

+G()OOAGT () + (higher order small quantities)

tt— T t|t 1

QMoving P 1 tothe left hand side and divide both sides by At

tt—
Pr+1|r Pt|t 1 r
= FOR, 8 FHO-KOH®P,  + G001 G (1)
QAs At— 0  lim Pﬂt =P =P(1)
At—0
dP(1)

dt :F(t)P(t)_I_P(t)FT(t)_P(t)HT(t)R_l(f)H(t)P(t)+G(l‘)Q(t)GT(t)

where we used K (¢)= P(¢)H' (£)R™'(¢)

 This is called the Riccati Differential Equation. Note that this is a matrix equation. Since the

covariance P(t)e R™" is a symmetric matrix, ln(n +1) independent scalar differential
2

equations are involved.



Matrix Riccati Differential Equation

 Each term involved in the Matrix Riccati Differential Equation has a clear physical meaning.

dP(1)

o= F()P()+ P(OFT (t)— POOH )R (O)H@)P@t)+ GO G (1) 62
The effect of the unforced system

dynamics upon the error

covariance transition.

% = F()x(t) + G(t)w(1)



Matrix Riccati Differential Equation

 Each term involved in the Matrix Riccati Differential Equation has a clear physical meaning.

dP(t _
d( ) FOP@)+ P@OF (6)- POH" OR' () H@)P()+G)O@)G (2) ()
: (These/matrix products are positive semi-definite.)
The effect of the unforced system Expected reduction of Expected increase of
dynamics upon the error uncertainty as a result of uncertainty due to process
covariance transition. state update using sensor noise with O(?).
dx signals having covariance
Z =F(t)x(t)+ G(t)w(r) R,

 This Riccati equation is the key component determining the optimal state update gain, i.e.
Kalman Gain: K(¢)= P(t)H" (t)R™'(¢) . It aggregates both state propagation and update
laws, and represents how each of propagation and update contributes to the prediction
uncertainty, together with the inherent dynamics of the process.



Kalman-Bucy Filter (Continuous-Time Kalman Filter) - 1961

Linear Time-Varying System . R(t);t=s
E[v(t)v' (s)]= :
. dx O, £S5
>tate Equation Z = F(t)x(1)+ G(t)w(z) Uncorrelated
i Q(t),t=s
Measurement noise E[w()w' (s)]= ]
Equation y(t) = H(t)x(1) +v(1) 0; t#s
Assumed Observable. E[v()w' (s)]=0; V¢, Vs

State update & propagation %i(z‘) =F(@)x(t)+ K(®)[y(t)— y(1)]

where  K()=P(O)H ' (H)R™'(f)  Kalman Gain

Covariance update & propagation
dP(t)

~— = PP+ P()F' (1)— P@)H" (DR () H(@)P(1)+ G()O([1) G (2)

The Riccati Differential Equation



6.2 Algebraic Riccati Equation (ARE)

U The Riccati differential equation is nonlinear. We aim to examine:
= How does P(¢) evolve with time?
= Does it converge?

= |f converging, will it converge to O or somewhere else? P(l‘) — 0 or P(OO) #0
f—>o0

1 Before analyzing the dynamic transition, we begin with steady-state properties.
1 Assuming that the Matrix Riccati Differential Equation converges.

S P() 5 0 P() - P FO.GO.H(@0), Q0.R(1) > F.G.H.O.R

[—>o0 [—>o0

1 Under this assumption, the Riccati Differential Equation reduces to an algebraic equation.

0=FP +P F' —P H'R'HP +GOG'

[ This is called the Algebraic Riccati Equation (ARE).



A Scalar Case of the Algebraic Riccati Equation
0=FP +P F'—P H'RT'HP +GOG"

1 Consider a scalar case where all the variables and parameters are scalar. The
Algebraic Riccati Equation reduces to
H> 5
ZFPOO—?POO +G Q:O

A This is a simple 2" order algebraic equation with the following solution.

R H?
P =— Fi\/F2+—G2Q
H* R

O By definition P(¢) =0, P_ =0 . Therefore, we discard the negative solution.

R H?
P = F+\/F2+—G2Q
H? R



A Scalar Case of the Algebraic Riccati Equation (Continued)

, . - R , H?
O Let’s examine the solution: p = | F 4+, [F?+ 2 _G? O
Casel. F=0 A =I+FAt=1 .
P 1. FS0&0=0 or

This implies the estimation of

G ~
constant parameter. I~ /RQ \2 R=0
H
If Ror Qis 0, then P_ =0 assuming GH > 0.
~~\
Case2. =0 No process noise \ﬂ\*
> time
P = (F+\/ )

H* Case3. R=0 A perfect sensor
2-a) F>0,i.e.an unstable systemP_= —22F R 72
H P = 2[F+\/F2+—G2QJ - 0
2-b) F<O0,i.e.astable system P_=0 H R k=40

[ Covariance never goes to zero, unless F'<0& O=00orR=0 . 17



(1 We have examined the steady-state solution to the Algebraic Riccati Equation, assuming that a

6.3 Convergence Analysis and Transient Response

solution exists. However, the original Matrix Riccati Differential Equation is nonlinear,
simultaneous differential equations, the behaviors of which may be complex.

(1 Here, we examine the transient response of the differential equation and discuss conditions
for obtaining a physically meaningful solution.

1 We introduce a technique for solving the Matrix Riccati Differential Equation.

Lemma Matrix Fraction Decomposition

Suppose that the square matrix P(¢) in the Matrix Riccati Differential Equation is decomposed to

P(t)= A()B™'(¢), V1

Where A(?) and B(¢) are differentiable and B(?) is non-singular. Then the Matrix Riccati
Differential Equation, eq.(62), can be written in the following linear form.

d
di

(i)

\ B(?) )

- H "OR (OH®)

F (1)

GG (¢)
~F'(t)

e

\ B(?) )



dP(1)

Proof of the Lemma = F(t)P(t)+ P()F" (t)— P()H ()R () H()P(t)+ G()Q(t) G (1)

Since matrix B(¢) is non-singular,

BB ()=1 —» BB'+BB'=0 —» B '=-B'BB!
Differentiating P(¢) = A(t)B~'(¢) yields

dP(t)

- = AB'+ AB™' = AB™'— 4B"'BB" (74)
Substituting P(¢) = A(¢)B~'(¢)into the Riccati Equation yields.
dP(t
dg ) FAB™ + ABFT — ABHT R HAB™ + GOG' (75)

Comparing (74) and (75), we find
AB'— AB'BB ' = FAB'+ AB7'F' — AB'H' R7'HAB™' + GOG’

Post-multiplying B to both sides,

A— AB'B=FA+ AB'F'B— AB'H' R"'"HA+ GOG' B



A— AB'B=FA+ AB'F'B— AB"'H' R"'"HA+ GOG' B

Collecting terms, we obtain:

% — AB™! % =(FA+GOG' B)— AB"'(H'"R"'HA- F' B)
I
Comparing corresponding terms on both sides, consider the following two differential equations:
% =(FA+GQG' B), % =H " R'HA- F"B)
These two matrix differential equations can be combined as
d [ A(1) j_ F(0) G(HO(G (1) [ A(1) ]
dt| B(t) | | H'OR'OH©) — -FT(@) B(t)

The matrix of the above linear differential equation is a Hamiltonian Matrix.

Punchline If we find A(¢) and B(¢) that satisfy the above linear differential equation,
then P(¢)= A(z)B~'(¢) is a solution to the Riccati Differential Equation.



[ Note that the above differential equation is linear, although the original Riccati equation is
nonlinear.
1 Using this linear equation, we can investigate properties of the Riccati equation.
U Let us first consider a scalar case: P(t)=a(t)/ b(t)
where a(t) and b(t) are scalar functions and b(¢) #0 . We also assume that the system is time-
invariant with all parameters being constant: F, H, G, O, and R.

/ ;)

. F G0

¢ 1= > a
(b] L (bj
. R )

U This linear differential equation with constant parameters can be solved without difficulty.
First computing the eigenvalues of the Hamiltonian matrix yield.

J Ay = +\/ F*+ % G*H? =+]



M The solution is given by U This leads to

a)) _ e Lo ()= {[P<A+F)+q]e"+[1m F)—qle)
b(r)) 1
|

where initial conditions are b(1) = M{(/l P)E(A+F)+qle” —(A+F)F(A-F)-qle }

a(0)=F, and 5(0)=1

where ¢ = G*O. Therefore, the covariance is given by
and M is the Hamiltonian Matrix above,

. +[B(A—F)—qle™”
which can be diagonalized using eigen P(t)= Z(r) T F []Ij (j+§)+cﬂ [/10( = P) /;]]eF —=
vectors associated with the eigenvalues. (1) ( IWE(A+F)+q]l-(A+F)[F(A-F)—qle

A0  The steady-state solution is given by
M=[v,V, [ AJ[V"“]_I

. R p) 0 2 9
P =limP(r)=—1 - = F+\/F-+:H-G-
AI-F H R

f—

a(f) “0 J(R
:[vav]' - [VI,V,] . . . .. .
b(1) L0 e ) 1 This agrees with the solution to the Algebraic Riccati

Equation. )



Numerical Example

P(r):a(f):q [R(A+F)+q]+[P(A-F)—qle™*"
Tbt) T (A-B)B(A+F)+ql-(A+F)[B(A-F)—qle*”

J Note that the denominator may

become zero at time: 4
\ \ Parameters: F =0
1 G+PR(A-F)-q] St N \\\ H=1
‘diverge R=1
“ 22 G-PIRGHP+ql ok | I NN -
\\ \\ \ Q =1
L This implies that the solution is 1 E T Stable
discontinuous, going from negative T - solution
infinite to positive infinite when P(t) 0 p—=r—r—o_- S—
. _ — 1 ¢+ Convergent »
passing the zero point. 1
Unstable
[ This undesirable discontinuity does not T Divergent *{ solution
occur when it starts with an initial -2 S\i\\\
condition \ \
3D ~— Solution going from —co t0 +co
\\ \ \\\ \ as denominator passes through zero

—

P, > R, F—\/F2+£62Q =P 4
H R

From Grewal and Andrews, “Kalman Filtering”, Chapter 4.8, Wiley 2001.

23

Larger than the negative solution of ARE.



An important property of the Riccati Differential Equation (RDE):

If the system 1s observable, 1.e. (F, H), Observable Pair, then the RDE has a
positive-definite, symmetric solution for an arbitrary positive-definite initial value of
matrix P,>0:;

AP(t) for VP, >0 p.d., suchthat P(t)>O0pd., P(t)=P (t)e R™", Vt>0, (87)

24



Example 1

Consider a stochastic system in continuous time modeled by the equations:

x(t) = —x(t)+w(t)

y(t) = x() +v(7)
where both process noise w(f) and measurement noise v(#)are white Gaussian with
w(t) ~ N(0, 30)

v(t) ~ N(0, 20)

a). Obtain the Riccati differential equation associated with the continuous-time Kalman
filter for this system, and solve 1t for the steady-state value of P(7), given initial condition
P,.

b). Solve the Riccati differential equation using the fraction decomposition method
discussed 1n class: P(7) = a(t)/b(¢) . Use initial conditions of a(0) = F,, 5(0) =1.

25



Solutions
a) The Riccati differential equation %P(f) — FP(t)+ P(t)F" — P(t)H' R'HP(t) + GOG"
For this system F'=-1, H=1, R=20, and Q=30

P(t) = 2P(t) — %Pz(t) +30

Steady state 0=FP_ + P.F' —P.H' R"HP. + GOG"

Steady state solution
p X [F+\/F2+%H2G2]

©  rr2

:2[_“‘/1%]:_20”0@

26



b) P(t) = a(t)/b(t) if we find a and b that satisfy:

3 e L)L TG

then P(¢) = a(t)/ b(?) satisfies the Riccati differential equation.

The eigenvalues of the Hamiltonian Matrix are

Ay Ay = J_r\/Fz +%G2H2 = i@ —+1

2
P(t) = olR, (/1+F)+Q]+Q[ A—F)-G Q]e—m
S (a- F)[P(A+F +Q l GQJe VT
imP( =P ——2—— 3% __ 50410410

P A-F 10
2

27



Example 2 Consider a scalar stochastic system 1n continuous time given by:

1(t) = ax(t) + w(t)
(1) = ex(t) +v(1)

where a and ¢ are known constants, and w(z) and v(¢) are, respectively, uncorrelated

process noise and measurement noise with zero mean values and variances O and R. The
sensor used for measuring output y(7) tends to have bias b, which 1s assumed to be
constant but 1s unknown. We want to build a Kalman filter to estimate both state x(7) and
unknown bias b simultaneously by using an augmented state vector:

Answer the following questions.

1 ! L 1 1 1
26 -10 10 20 30 40 50 60 X
28



Questions

a). Obtain revised state equation and measurement equation associated with the
augmented state X(7).

b). Obtain the Riccat1 differential equation associated with this Kalman filter, and solve it
for the steady-state value of P(7), given initial condition P,.

¢). Discuss whether the bias can be estimated correctly, and under which conditions the

state estimation error converges to 0. Obtain properties of the system and parameter
values that allow P(?) to converge to 0: lim P(¢) =0.
f—x

X state
X = There is no fundamental difference between state and parameter.
b parameter

29



Solution

a). The bias 1s on the sensor. Therefore, the output function alone must be modified. The
state equation remains the same except that the dynamics of the new state variable, 1.e.

the bias b, must be added:
x(1) = ax(t) + w(t)

b(t)=0

d[x(t)j [a O}Vm] {1}
— = + w(t)
dt\ b(t) 0 0|\b@®)) |0

The observed output using this sensor 1s given by: e
W(0) = ex(t) + b(0) +V(0) R ey
| <~ . |bias b
x(7)
H=Ilc 1 +v(f 20 "1 o 20 30 40 30 w0 X
y0=| ][b(t)j (1)

This gives the output equation in the augmented state space.

30



Question

Solution

b). Obtain the Riccati differential equation associated with this Kalman filter, and solve it
for the steady-state value of P(7), given 1nitial condition P,.

a 0 1 d(x@®)) [a 0](x(®) |1
E {o 0}’ G:M’ H=le 1] dt[b(t))[o 0_(19(1)}{0}”’(0

Writing the covariance matrix as [ x(f)'
H=|c 1 +v(t
P:[il is) 2 X 2 matrix y( ) [ ]\b(f)) )
3 2 |

2

we can compute each term involved in the Riccati Differential Equation:

FP:{G O}[Pl sz:[apl aps} PFT:{OPI O:| P
0 0f\p, p,) [ O 0 ap; 0 D _ Foypey+ POFT ()

PHT:(pI Pg][c}:{cpl-kp{l ) )
p; vl [eps+p, —P(OH" ()R (DH()P(?)
G Gt
PHR™HP :i{cpﬁ%}[cpﬁps cp; + P, Homene
R|cp;+p,

Substituting these into the Riccati Differential equation yields:
i[l—’l Ps J _ {2‘11)1 aps}_i{ (cp, +P3)2 (cp, + ps)(ep; +p2):|+[Q O}
dt\ps p,) [ap, O (o, +p)eps+py) (s +po) 0 0

31
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i[l’l Ps ) _ [201)1 aps} _i[ (cp, + p; )2 (cp, + p;)(cp; + pz)} N {Q 0}
dt\ p; p, ap; 0 R| (ep, + p;)(cp; + p,) (cp, -|-p2)2 0 0
dP

At steady state, " 0. Three simultaneous equations are obtained from the Algebraic
/t .

1 )
0:20p1—5(6p1+p3)'+Q (D

Riccati equation:

1
0=ap,——(ep+ps)eps+p,)  (2)

I :
O:—E(cp3 +p,)” (3)
From (3), cp, + p, =0. Substituting this into (2) yields p, =0. Theretfore, p, =—cp, =0.
2

C 5 |

—p; —2ap,—0=0

R R J . 0 >

. : : " : : — | da+,ja +—¢C 0

Solving this and taking the positive solution yield P, =|c" R

R » O, 0 0
pl—c—z(a+\/a +EC J — -



Question ¢). Discuss whether the bias can be estimated correctly, and under which conditions the
state estimation error converges to 0. Obtain properties of the system and parameter

values that allow P(7) to converge to 0: lim P(¢) =0.

Solution o gince p, =0 at steady state, the estimation of the sensor bias b converges to the

correct value; zero estimation error, regardless of other parameters. Note that this
1s possible because no process noise 1s involved in the bias dynamics.

e The estimation error of state x(7) becomes zero, p, =0, when either of the

following two conditions 1s met:
o Zero sensor noise: R = 0.
o No process noise: Q = 0, and the system 1s stable or marginally stable:

a<0.

_ - d [ x(t) |a 0 x(r) 1 ’
5,(a+\/a2+gczj 0 Py D dt\ b(1) 10 0 b(t) i 0 W)
P =|c R = - ; T
| | Py P3 x(1)
0 0 —
: _ y(t) [c 1] (b(t)) +v(1) )




