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18. Subspace Methods for System identification

Prediction Error Method (PEM) Subsystem Methods
O Parameters @are not linearly involved in the d In state space representation of LTI systems,
predictor (¢|0) except for ARX and FIR models. parameter matrices, A, B, C, and D, are linearly
O Local Minima: Non-convex optimization, Repetitive involved in state equation and measurement
computation; Extended LSE equation. In discrete time,
O Remedy: Instrumental Variables for unbiased x(t+1)= Ax(¢)+ Bu(t)

(consistent) estimate

) i y(t) = Cx(t)+ Du(t)
6y =argmin— (y(0)=5(¢|0))

U This can be re-arranged to:

()
Real System x@+l) | [ 4 B || *@)
u(t) Prediction (1) C D u(?)
Fr———========== Error N - N - I
G(4:0) Y(t) © o(1)

hand side by Y(t) and the combination of x(t) and
u(t) by ¢(t), we can find that the above equation

|
I
: y(t6) O Replacing all the parameter matrices by ©, and left
:
R : can be solved as a standard LSE problem.



Gopinath’s Formulation

O B. Gopinath at Bell Laboratories (1969) is the first to formulate the basic algorithm of Subspace methods.
O Consider a multivariate LTI system

x(t+1)= Ax(t)+ Bu(t)+n(¢)
y(¢) = Cx(t)+ Du(t)+v(¢)
where x € R ueR™! yeRP! . n(and v () are residues,

and A, B, C, and D, are constant parameter matrices (system matrices) with consistent dimensions.

O Rearranging the above equations,

x@+l) | [ 4 B || *®) s n()
y(t) C D )| u(t) v(1)

O The parameter matrices are separated from other variables in this expression; a linear

regression. The least squares estimate of the parameters is given by 1

) A N-1 1 N-1
%{ 47 )= S| (o o )| 2o do

t=0 y(t) ol u)



) | (4 B ) 20 | [ 10
»(t) C D )| ut) 0(t)

U The LSE solution is unique, if the regressor covariance is full rank. That is,

ok x(0) x(I) - x(N-1) -

u(0) wu(l) - u(N-1)

U Residuals 7 and v are zero-mean, and their covariance can be obtained by

S| 1E no
SQT )| I (n%) v%))

QO If we treat unmodeled dynamics, uncertainties, and some nonlinear effects as noise, the
above covariance provides the statistic properties of the noise.

O This is the basic formula of subspace methods found in B. Gopinath’s work in 1969 at the
Bell Laboratories.

O The key question, however, is how we can obtain states x(t), x(t+1),... from input and output
data. This question is directly related to a System Realization problem.



Realization of LTI Systems

O Let us obtain a state space representation (state and measurement equations) from a given transfer
matrix (function). This is called a system realization problem. There are multiple sets of state and
measurement equations that produce the same transfer function, i.e. the same input-output behavior.

u(t) 0 S’:rmrd x(t+1)= Ax(t)+ Bu(t)
G(q ) —_— y(t) = Cx(t)+ Du(t)
Realization

O The particular state space representation we want to realize is the one that uses the lowest dimension of
state variables, called Minimal Realization.

O Minimal realization is unique up to a non-singular transformation among the sets of state variables.

O The following are a quick review or a summary of background information required for studying system
realization.



Quick Review / Summary of Background Linear System Theory

O The following are a quick review or a summary of background information required for studying system
realization.

a. Impulse Response v.s. State Equation The output to the impulse input

x(t+1)= Ax(¢t)+ Bu(t) Du(0):

9(£) = Cx(t) + Du(t) ()= CA Bu(0): 10 (1)
From the state equation above, Let {G(0),G(1),G(2),-} be impulse
y(t)=Cx(t)+ Du(t) = C(Ax(t — 1)+ Bu(t — 1))+ Du(t) response coefficient matrices

= CAx(t—1)+ CBu(t — 1)+ Du(t)

) IO 2G<k>u<r k)
= CA”x(t = 2)+ CABu(t - 2)+ CBu(t — 1)+ Du(¢)

For the |mpulse input, y(£)=G(Ou(0) (2)

{
++= CA'x(0)+ Du(t)+ Y, CA™ Bu(t i)
i=1

Comparing (1) and (2), we find

Impulse Response: x(0)=0 G(1) = D: t=0
u(t)=0; t#0 | caBir=1,2,-




b. Observability

O Reconstruct the initial state x(0) from output sequence y(0), y(1),:--, y(k—1) , assuming no input for all t;

¥(0)=Cx(0) 1(0)
y(1)= Cx(1) = CAx(0)

| o | M|
y(k=1)=CA'x(0) Y1)

O The initial state x(0) is determined uniquely, if 6%{
is of full column rank.

QO In the system identification context, the system order » is often unknown.

Therefore, we set & to be strictly larger than .

O We call matrix 6}{ Extended Observability Matrix.

C
CA

x(0)

u(t)=0,vt

fp=1,k=n,and @ € R"™"
is non-singular,

y0)

x(0)=0""

~1
\y(n ))

is uniquely determined.



c. Reachability and Controllability

O Consider a discrete-time LTI system of order ». If the initial state x(0) = 0 can be transferred to any
state at time » by means of a sequence of input, u(0),u(1),---,u(n—1), then the system is called

u(n—1)
- A”x(0)+( B AB - A"'B j un=2) u(n—1)
\ v / : _ can span the entire
Ce R u(0) C- u(n. 2) n-dimensional

space, if C is of full

QA If matrix C is of full column rank, then a sequence of input u(.O) column rank.

exists that brings the state to an arbitrary state in n steps.

Q If matrix 4 is non-singular, then a reachable system is also controllable.

Reachability Arbitrary

Origin | State
Controllability

Q In the system identification, we often do not know the system order. We use Extended Reachability Matrix.
C, € Rxkm s



18.2 Ho-Kalman’s Method for System Realization

O Ho-Kalman’s method is a foundation of Subspace methods, where state and measurement equations
are obtained from impulse response coefficient matrices.

O Consider a LTI system that is both observable and reachable, that is, the matrix triple (A,B,C) is minimal.

O We first construct a block Hankel matrix using given impulse response coefficient matrices:

G G - G CB  CAB - CA"'B

G G G 2 k Recall
H=| 2 3 k1 || CAB CA™B CA"B | o ohpxhm

. . . : . : 0

| | : k 1 k | Z}c 2 G(t): -1

Ge Gn Gy CA'B CA*B ... CA* B CA™'Bit=12,
where k>n

O Interestingly, this Hankel matrix can be decomposed to the extended observability matrix and the
extended reachability matrix.

C

H= C:A (B AB - A'B j=0kc’k

Cc4x!



O Take the Singular Value Decomposition of the Hankel matrix H:

5 0 7
HzUEVTz( U, Uz) ! Lol=uE
0 0 ) ¥,
2
where Z 0
;- A 20,220 >0
0o A

O Note that the rank of the extended observability matrix and that of the reachability matrix are x.
O Obtain the positive square root matrix of 21:

%= - nfact X’T?=%

O Construct the observability and reachability matrices as follows:

1/2 _ /2y, T
0,=U%, and Ck—Zl 4



0,=UZx/” and ¢, =31
0 The product of these matrices recovers the Hankel matrix H.
11251127, T
QG =U2 2V =U)y =H
Q Also, 0, =UZI*T and ¢, =T '%/*1]", too, recovers the Hankel matrix, where T is a non-singular matrix.

U From the above observability and reachability matrices, minimal system matrices (4,B8,C) can be
determined.

172
= From O, =U2, = From Ck:Z}/zVIT
C

O = C;A = C=0,(1: p,) eR™ Ck:[ B 4B - Ak'lB) = B=C,(;,1:m) e R™"




O To determine the 4 matrix, we examine the extended observability matrix; Post-multiplying 4,
we have

C CA
2
C.A A= C’fl :¥k+1(p+1:p(k+1),:2e‘ﬁpkxn
CAF] C4¥ Ot

R - !
O Solving this for 4: Pre-multiplying OkT (¢ e R
T ey Y . T =1 AT A1
Ok OkA_OkO k+1 A_(Ok Ok) OkO k+1
| \ Y,

n x n, Non-singular

Pseudoinverse O}f

O Therefore, the minimal system parameters (4,B,C,D) are directly obtained from the Singular Value
Decomposition (SVD) of the Hankel matrix H consisting of impulse response coefficients G(k).



18.3 Data Matrices

O Ho-Kalman’s method allows us to determine system parameters in state space, (4,B,C,D), from

impulse response coefficients.
O However, our objective in system identification is to obtain (4,B8,C,D) from input-output data.

Input-Output Data Impulse Response State and Measurement Equations

Ho-Kal
(u(t), (1) t=0,1,2,+) G(1),t=0,1,2,-- ———=%  (4,B,C.D)
\ -
Subspace ID MOESP, N4SID
O In Subspace methods, we place data in block Hankel matrix form.
» [nput Data Matrix = Qutput Data Matrix
U ) y0)  y(1) - yN-1)
— T ul) u2) u(N) v = YD ¥ Y(N)
Uom{ : . : Ok—1 — 5 5
XN u(B=1) u(k) - u(k+N-2) PRXN | y(k=1) y(k) - plk+N=2)




Example 18-1.

at t = 3, and observe the response of a LTI system with 3 steps of delay.

1u=(0,0,0,1,0,0,---), »=(0,0,0,g,.9,.2,,83."")

Suppose that y(¢) = 0, £ < 0. Apply an impulse input

Let £ =4, and N =8. We form input and output data matrices, and append them.

u0) — u(l) -
u(l)  u(2)

k-1 —

u(k.— 1) u(k)

y©0)  yd) -

oD v(@)
k-1~ : .

yk=1) y(k) -

u(N-1)
u(N)

o u(k+N=-2)

y(N-1)
y(N)

y(k+N—2)

0O 0 0 1

0 1 0
o 1 0 O0°:
1.0 0 0:;
0 0 0 g,
0 0 g, g
0 g & &
g 8 &

Zero-input response
u(0), *

e y(t)
““i-_--ft:: .
S u(t) Time
0 0 0 0
0 *&-\
O 0 0 O
OOOO Zero input
&1 & & & This block is the
8 8 84 &; Hankel matrix f1, 4

884 8 & &7

d The Hankel matrix is factorized to observability and reachability matrices H =0, C, , from which a

minimum system (A,B,C) can be obtained.

O The above input-output data have a special structure: Zero-input response. General input-output
data do not have this structure. However, as shown in the following, they can be transformed to the
zero-input structure from which system parameter matrices can be determined.

14



Collective Input-Output Hankel Expression

0 From state and measurement equations,

y(t) = Cx(t)+ Du(t)

y(t+1)=CAx(t)+ CBu(t)+ Du(t +1)

Y(t+2)= CA*x(t)+ CABu(t)+ CBu(t + 1)+ Du(t +2)

U These equations can be written collectively,

/

\ y(t+k-1) )

W

y(t+1)

yk(t) kal

Q Or, succinctly,

Y, (6)=0,x(t)+Y¥ u (?)

( C A
C,A x(t)+
k-1
A
Ok pkXn

(D 0 0 )
CB D I
I .0

. c4°B - CB D |
LPk pk X mk

This matrix is a block
Toeplitz matrix.

v
.

( u(t) )
u(t+1)
\ u(t +.k —-1) )

uk(t) mk x 1



O Note that concatenating y, (0) y, (1) --

Y

Collective Input-Output Hankel Expression

= 2O 30

y(N-1) |

Simiarty, Uy, =( #,0) ,(1)

Also, we define X|, é( x(0) x(I)

u, (N-1) )

x(N-1) )

y.(N—1) yields the block Hankel output matrix,

Q The input-output relationship, ¥, (£)=0,x(t)+Y 1, (¢), can be expanded to the block Hankel form,

Y,  =0X,+¥,U

01

kY Off-1

O This is a succinct expression of the following relationship.

01

»0)  y@) - ¥N-1) c
y® ¥ YN ||
Y (k.‘ ) y(k) y(k+N— 2) CA*!
) ,
Y. 0,

x(0) x(1) -

x(N-1) |+

X,

k

D 0 0
CB D :
: .0
cA**B ... CB D

‘ ¥

u@0) u@) -  u(N-1)
u(l)  u(2) u(N)

mk—n uw)-ﬂ mk+N—2)

v

U0|k—1




Assumptions on Data

O For constructing subspace identification algorithms, we have to make three key assumptions on data.

»0)  y@ - yN=1)
y(zl) ¥(2) ) y(:N) :Ok( $0) x(1) - x(N=1) )+ka
k=) ) e skeN-2) | |
| T pkx N | e Q % )
0 Assumption A-1: rank X, = n. A2

X1
The state vector is sufficiently excited, or the system is reachable.

O Assumption A-2: 1rankUOV€_1 = mk

The input sequence is persistently exciting of order k.

U
Ot ] =mk+n

X,

O Assumption A-3: rank{

Xy and Uy, are not collinear. No linear state feedback: u = Kx.

u(0)
u(l)

u(k.— 1) u(k) u(k+N—2)

u(l) -+ u(N-1)
u(2) u(N)

e

Uskst  mkx N

Recall Y ¢(1)¢’ ()= (full rank)

@' (0)

(@@ - ev-b )
@' (N —1)

(u(O) u(N—l))

In other words, the spaces spanned by the input matrix and the state matrix do not intersect.

span Xo M span Uo‘k_1 = {0} Experiments should not be taken with linear state feedback, u = Kx.



Transformation to Zero-Input Response

O Under these assumptions, an arbitrary input-output data matrix below can be transformed to a type of
the zero-input response form, from which system parameter matrices are determined.

————

U L 0
Olk—1 1 |
Wok-1= v ) IR |
01 21 \ 22, Zero-input response
0 We need to prove a few Lemmas.
Lemma 18-1.
Suppose that the 3 assumptions are met and rank Ok = n for the following data matrix. Then, the rank of
the matrix is:
U0|k—1 |dentity Matrix
rank = km+n rank: km
Yot
U TR U
Proof Rearranging YO\k—l =0, X,+¥ U k-1 —> Ok=1 1 _ | "l famxn Olk—1
Yop Yy (G X
O This Lemma implies that, if we delete row vectors in }
Yy, that are dependent on the row vectors in Uy, , \ J a\ rank: ”j rank: km + n

there remain exactly n independent row vectors in¥y, . rank: fom + 7 rank: km + n



Transformation to Zero-Input Response (Continued)

Lemma 18-2
Any input-output pair of length  that satisfies, y, (0) = 0, x(0)+ ¥, u, (0), can be expressed as a

linear combination of the column vectors of data matrix 7, ; , which satisfies the 3 assumptions.

That is, there exists a vector ¢ € R such that

( A ( )
uk(O) U0|k—1 . UO\k—l
= {,  note: Wor1 =

¥, (0) \ Yoy ) \ Yoyt )

Proof For an arbitrary input-output pair #,(0) and y,(0), there exists an initial state x(0) that satisfies the
equation: y (0)=0,x(0)+"Y u,(0)

. Olk—1 u,(0) 3 U0|k—1
By assumption, rank =km+n | therefore - G
X, x(0) X
Similar to Lemma 18-1,
W0 |1 L Qg () Y R s [ = Yop- ¢
yk(O) LPk Ok x(0) LPk Ok Xo YO\k—l

Q.E.D.



LQ Decomposition

O From the previous Lemmas, a Zero-Input Response can be created by a linear combination of the column
vectors of data matrix Wy, .

0
U 0
3¢ e RV, Wole=| ,
e 7(0)
> s
Ho1k-1 (k-1)

O Repeating this to create sufficient Zero-Input Response vectors, we can form a Hankel matrix from which the
system matrices (A,B,C) can be obtained, as demonstrated in Example 18-1.

O However, this transformation of data matrix ,_;, to the Zero-Input Response form can be achieved by LQ
Decomposition.

Yoo 1 m+pk | | Lu 0
é’ e é’ = :
i \ ) Ly Ly

v

0

0 LQ decomposition transforms the data matrix 7_, to a Lower Triangular Matrix, which is the form
of Zero Input Response



QR Decomposition

0 LQ Decomposition is the transpose of so-called “QR Decomposition”. An arbitrary rectangular matrix 4 € R
can be decomposed to an orthonormal matrix O and an upper triangular matrix in the following form:

’
R,

. 0

1=0r=( 0, 0 |

n m-n

\

J

O Matrix Q consists of unit-length column vectors that are orthogonal to each other.

()
0'0-| © (o o -

( A
0'0, 0'0,

20 90,

\

X

*

0

(**
O*
.0
.0

10
O m—n)

X

*

*

\

J

e S{an

0 MATLAB code: qr(A), (Q, R)=qr(A) returns an orthonormal matrix Q and an upper triangular matrix of

the above form.

O There are effective algorithms to obtain the QR factorization of a rectangular matrix.
O Gram-Schmidt procedure — numerically not stable
0 Householder Reflection — widely used method



LQ Decomposition of Data Matrix 7, ,

 We apply the transpose of the QR decomposition form to the data matrix Wy, .

T
A=QR— AT =RTQ" TR
Yoy Ly Ly Q2T

O The two well-known Subspace Algorithms can be derived from this LQ Decomposition.

= MOESP (Multivariable Qutput Error State sPace)
= N4SID (Numerical algorithm for Subspace State Space System |dentification) --- read “Enforce It!”



