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Kalman Filter and Extended Kalman Filter

Measurement

4 KF, EKF, and UKF provide a particular value of the state as estimate.



[ Giving a particular value as estimate makes sense when the state distribution is
Gaussian or unimodal.

Gaussian Distribution
Mean X and standard deviation O

Mean represents the estimated value very well,
— — . with Standard Deviation being Accuracy of
X prediction.

O However, if the distribution is not Gaussian and multimodal, the single value is a
poor representation.

Non-Gaussian Distribution
\ /

distribution of the random variables.

\ A mean value does not represent the overall
The mean is the least likely value in this example.

=]



Belief

Non-Gaussian Distribution

g(x) A mean value does not represent the overall
distribution of the random variables.

Belief ¢g() : the entire pdf distribution rather than a single value.

Bayes Filter predicts the pdf distribution of a random variable.

N

X1 = xt|t—1 = X Kalman Filter
91 xt—l) — gt|t—1($t) — gt|t($t) Bayes Filter
Propagate Update

attimet-1 a priori"estimate. a po"steriori estimate



Markov Process

Discrete-time stochastic state transition, in general:
Pr(z, | 2,2, 4,0y, 1 )

The probability of random variable X, = z, , given previous states and
inputs z,,---,z, |, uy, -, u

b1 » Y1
A special case where the probability of X, = z, dependsonlyon z, ,,u, , the
process is called a Markov Process.
PI’(QZt ’ .fl?t_l,ut_l) ”,”—’ ___§_~_~:\\\
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u u u



Chapman-Kolmogorov Equation

"‘ State X, =x, can be reached from x _,
with conditional probability density of

Pr(x |x _,,u_,)

o/ where —oo< X, <oo has a pdf of Pr(xt_l)
Q \

~Pr(x, [x,_p,u,_) Therefore, the pdf of Pr(x,) is given by

Pr(x,)= j_m Pr(x, |x_,,u_)Pr(x,_,)dx |

t—1°

This is called the Chapman-Kolmogorov Equation.



State Propagation Law

d In our Bayes Filter problem, we want to recursively estimate a priori belief gt|t_1(xt)
from a posterior belief at time t -1, gt—l(xt—l)
O Given a state transition equation gt_l( xt_l) gt|t—1( xt)
X, = (XU y) + W,
"~ Additive noise

O Applying the Chapman-Kolmogorov Equation,

g—1(X,)= j_w Pr(x, |x,_p,u,_,)g, (x,_))dx,_

Pr(x, |x,_,u,_;)

How can we find this probability?

X, = f(x_pu_))+w,_,
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State Propagation Law (Continued)

O The State Transition Equation
T ()

Deterministic Random

0 Givenx,_; and u,_, , the randomness of x, comes from process noise w, |~ f,. (W, )

t—1"

fW“ Since W,_; =X, — f(xt_laut_l)

w
pdfof W,_, The state transition pdf is given by

Pr(xt | xt—l’ut—l) = fW (xt - f(xt—l’ut—l))

> W1

Back to the Chapman-Kolmogorov equation:

g ()= f(x, = ) gy (3, dx,

a priori belief ..... Belief Propagation Law 8



Where are we ?

State transition with process noise

L 4
/ \
a posteriori belief 8t_1(xt_1) gt|t_1(xt) a priori belief
t=t+1 ‘ /
g, (x,)~ "

Assimilating a new observation ), with measurement noise



Where are we ?

Belief Propagation

o

g (x_)) State transition with process noise Ly (%)
e \ /\
, / \

a posteriori belief gt_l(xt_l) gt|t_1(xt) a priori belief
t=t+1 I /
g, (x,)~ "

Assimilating a new observation ), with measurement noise

Belief Update
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Where are we ?

Belief Propagation

State transition with process noise

L 4
/ \
a posteriori belief 8t_1(xt_1) gt|t_1(xt) a priori belief
t=t+1 ‘ /
g, (x,)~ "

Assimilating a new observation ), with measurement noise

Belief Update
Kalman Filter:

ft = '£I|t—l +Kt[yt _)A/t]

How do we construct this for Belief? .



Bayes’ Rule

U Joint probability density
p(x,y)=p(x[y)p(y)=p(y|x)p(x)

B p(y | x)p(x) State ObservatioL
PRI ==20) X @ Y

3 Suppose that we know the conditional density p(y|x)
how can we estimate the state x from observation y: p(x|y)?

dRemark: p(y)= J_o:o p(y|x)p(x)dx

(1= |7 pGalyyar= [ PO e :p<y|x>p<x>dx)

 Therefore, denominator p(y) is a scaling factor.
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p(y) is nothing but a scaling factor that makes J-OO p(x|y)dx=1

1
O We do not need to know p(V). So, let's replace it by a constant: p(y)=—
Measurement y o
Then, / a priori belief p(y|x)— f,(y,—h(x,,t))
p(x|»)=np(y|x)p(x)  &y1(x;)
— R Prior It
a posteriori belief 4
g.(x,) Generative Model fV(Vt)

(Similar to Likelihood Function)

O We can construct p() | X) from the measurement equation:

Vi
State Observation (Output function): : ‘ / Vi
inist g (x,)
Deterministic Randoy ¢\ Ay /7N, &y (x)

PN
gt(x) an(yt h(xtﬁt))gt|t 1(x) Belief Update ,j =

X

‘.

Measurementyt \ L 13




The Bayes Filter Algorithm

1. Initial Conditions: &y(¥,) set¢=1;
2. Belief Propagation:

=~ Modes
g ()= f (= fGu ) gy (3, dx, L &(x,)

3. Assimilate ¥, and update the a priori belief

g, (x) =11, (y,—h(x,,0))g,_,(x,)

.=

4. Return g,(x,). Setr=¢+1and repeat. MAP X
Maximum a Mean
Q Interpretation of the belief g,(x,) Posteriori
Prediction

= Maximum a Posteriori Prediction (MAP)
* Modes (multiple)

= Medium

= Mean 14

Interpretation



llustrative Example A Robot at the Killian Court, MIT

. The robot has no idea where it is at the entrance of Building 10.
=—— * I Ithas aLIDAR system to detect objects nearby, e.g. pillars.
M Good thing, it has learned Bayes Filter, passing 2.160.

15



lllustrative Example

Initially, the robot has no idea where it is:
(A) | A uniform distribution

v

A pillar has just been detected, but the robot

does not know which pillar it is. Observation

A-A-A',

‘ L Mg\ Map landmarks
91(931) = np(y | z,M)g,(z

AN T Xﬁ”\

N
»

\ 4

Update

3

0oy (1) = [ p(y | 2,0,)9,(3,)

Flattened Propagation

ANAN _°

As the robot moves, the location estimate
becomes more uncertain.

Observation
 Now observing another pillar: 2"d observation.

p(Y, | T,) J\ J\ x:(E)

g2($2) =7 (yg | le2)92|1(332)

Most likely at the
second pillar (F)

N

Update 6 X



Bayes Filter

O Nonlinear dynamics, non-Gaussian distribution

O Use of “Belief”, pdf estimation rather than a single value estimation.
O Bimodal, skewed distribution of state can be treated.

U Multiple Hypothesis Tracking: all possible cases are tracked.

U Low probability cases, too, are not eliminated.

O Computationally expensive:
gt|t—1(xt) = _[_00 fW (xt B f(xt—l’ut—l)) gt—l(xt—l)dxt—l

g, (x) =11, (y, = h(x,,1))g,_(x,)




Most General:
Nonlinear dynamics;
Non-Gaussian noise

Assume:

Bayes Filter

Apply:

 Gaussian noise

- Linear time varying \

system

* Monte Carlo

/ Approximation

* Importance sampling

Kalman Filter

Particle Filter

Kalman Filter can be derived
from Bayes Filter;
Proof of Kalman Filter

Bayes Filter can be computed
effectively with Particle Filter;
Implementation of Bayes Filter

18



8.4 Gaussian Kalman Filter (so-called Kalman Filter)

O Kalman Filter is a special case of Bayes Filter. We can derive Kalman Filter from Bayes Filter by making
the following assumptions.
L Assume a Linear Time-Varying stochastic system:

X, 4= Atxt + Btut + Gsz

_|_

y,=Hx +v, Further assume for brevity u, =0, G, =/

O Assume white (uncorrelated) Gaussian noise:

WtNN(OaQt)a VtNN(OaRt)

-

where Q . =g R- =g
E[ww/1=1 ~° , Eflvy ]=< " , Eflwy "1=0,V1,Vs
0; t#s 0; t#s
and Gaussian distribution
1 | 1 1 7 -
——w, 0 W, eXp| — <V, sz v,

I = Jdet(27R))



Deriving Kalman Filter from Bayes Filter

 Goal: Find an optimal state estimate that minimizes the mean squared prediction
error conditioned by all the prior observations and inputs.

A . A 2
x;):argn}lnE[|xt_xf| ‘yla"'aytaula'naut_l]

Xy

d This is equivalent to the conditional mean:

)’etO — E[),(\ft yla’”ayt]

Check this for a scalar case:

J=E[%x—x[]

dJ
dx

=}

= 2E[f—x]=2(X— E[x])=0, ..%= E[x]



Proof of Gaussian Kalman Filter (Outline)
Step 1
QGiven that g, ,(x, ;) is Gaussian, show that g, ;(X,), too, is Gaussian.

81 (x;_l) Linear State Transition
—
P »

t|t1 tlz‘l

a posteriori belief a priori belief

[ Use Induction: If the distribution of x,_; is Gaussian with mean X, , and covariance P_,

1 1 N T n
gt—l(xt—l) = expﬁ_g(xz—l o xt—l) Pt—l(xt—l o xt—l)j
\/det(27z' Pt—l) Linear state
Then we can show that &, ;(X,)is also Gaussian. propagation
does not distort
the distribution.

1 1
gu1(x,)= exp| —=(x,—%,_) P (x,—% )]
tHe—1\"1 \/det(27rPt|t_1) 2 tit—1 tlt 1 tlt—1

_ T
where Pt|t1 A P lAt 1+Qz—1

 This is a highly technical derivation. See the lecture notes for details. .y



Step 2- Belief Update Measurement noise pdf

~
ORecall  g,(x)=nf,(y,—h(x,,))8,(x,)

~ N\

Gaussian Gaussian

with Covariance R, with Covariance P, ; eXp(##)

exp(#)
 Therefore, the belief update should be in the following form:

g, (x,) = n'exp[#]exp[##] = n'exp[#+ ##]=n'exp[-N(x,)]
d Here,

1 T ol 1 n \T pl .
N(xt)zi(yt_Htxt) Rt (yt_Htxt)_i_E(xt_xﬂt—l) Pt|t—l(xt_x

A This is a quadratic function of X,

1
N(x)— xX'(H'R'H + P, )x, +

tt—1

tt—1 )



Step 2: Belief Update (Continued)

g,(x,)=n"exp[=N(x,)]

where

1
N(x, )——xT(H "R7H,+ P, )x, +-

1 Recall that the optimal estimate is the conditional
mean:. o _ rre
xt _E[xt ..,yt]

d Since the pdf of x, is Gaussian, the mean is at
the peak and is unique: Convex Optimization.

d
L) pexpl-N (e - (N ) =0
X, dx,
Since €xp[—N(x,)]#0 ~dN(x,)

=0

dx

4

g (x,)

dg,(x,) _

dx

23



Step 2: Belief Update (Continued)

dN(.X) ] _ 1 X B ,\
dxt =0 where N(x):_(yt_Htxz)TRt l(yt—Htxt)+5(xt—xt|t_1) E|t11(xt—xt|t_1)
4
- Recall i( " x4 x"Bx)=0 — Ax+Bx=0
dx 2 2
Therefore d]\;(xf):o — —HtTRt_ l(yt X))+ F tlt— 1(x z|z—1)=0
X
t

[ Denoting X, that satisfies the above optimality condition by ft

-1 /A A T p-1 A
Pt\t—l(xt_xtpf 1)=H R (yt Hx +Hzxt|tl th\t 1)

=H'R'(y, - D—HRH (8%, )

H, t|t
(P! +]YTR_U¥)Cx—<gV1) H'R\(y -H Note

tlt—1

U Noting that P b
~X =% _+PH'R'(y,-H

t\t 1

t|t 1)
+H R” H and pre-multiplying P,

. t|t ;) This agrees with the state update formula.

This is the Kalman Gain K.



Punch Line

dWe have arrived at the familiar linear filter:

=%, +K(y - ), K =PH'R"

tt—1 t t|t

dlIn this proof we have never assumed that the optimal filter is linear. Instead, the
linear filter has been derived from the optimality conditions.

dKalman Filter is optimal among linear and nonlinear filters, as long as the
noise, w, and v,, are Gaussian, and the process is linear time-varying.



