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Latent Modeling
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qPrincipal Component Regression: Characterizes the input data space, reduces the input dimension 
based on Principal Component Analysis, and regresses on principal components.
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Latent Modeling

x =

x1
x2
!
xm

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

z1

zm*

y =

y1
y2
!
yℓ

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Preprocessed
Input Data:
Mean-centered
Normalized

Latent Space

Re
gr

es
sio

n

qPrincipal Component Regression: Characterizes the input data space, reduces the input dimension 
based on Principal Component Analysis, and regresses on principal components.

qCaveat! Small principal components, which are ignored, may be highly correlated with outputs. 
Those components must not be neglected.
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Latent Modeling
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qPrincipal Component Regression: Characterizes the input data space, reduces the input dimension 
based on Principal Component Analysis, and regresses on principal components.

qCaveat! Small principal components, which are ignored, may be highly correlated with outputs. 
Those components must not be neglected.

qComponents having significant correlation with outputs must be involved in the latent space.
qThis requires to analyze both input and output spaces, rather than characterizing the input space 

alone.
qMultiple Outputs: Unlike single output regressions, we often need to estimate multiple outputs, 

which may be correlated.
qThis lecture will discuss the latent space modeling based on input – output correlation analysis.
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4.3 The Core Algorithm of Multi-Input, Multi-Output Partial Least Squares Regression

Partial Least Squares Regression is a latent modeling method for predicting a set of 
outputs in relation to a reduced order inputs. The basic idea is to find a low-dimensional 
set of input space variables that is most correlated with a given set of output data. It is to 
analyze data in both input space and output space.
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4.3 The Core Algorithm of Multi-Input, Multi-Output Partial Least Squares Regression

Step 1. Find the directions of a pair of unit vectors,                 in the input space and                      
in the output space, that maximizes the correlation between the projection of input vector 
onto the unit vector, , and that of the output vector, .

v ∈ℜm w∈ℜℓ

z = vT x r = wT y

max
v,w
E[z ⋅r] = max

v,w
E[vT x ⋅wT y]

= max
v,w
vT E[x yT ]w

where

v = 1, w = 1

v

x

x1

x2

xm

z = vT xO

y

y1

y2

yl

O
w

r = wT y

Input Space Output Space

Covariance of mean-
centered random 
variables x and y.

CXY

q is called the score of input x with respect to v, and                    is called the score of 
output y with respect to w.
z = vT x r = wT y
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CXY = E[x yT ] = E
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Solution: Using two Lagrange multipliers for the two constraint equations,

(vo ,wo ) = argmax
v,w

vTCXYw−
1
2
λv (v

Tv −1)− 1
2
λw(w

Tw−1)
⎧
⎨
⎩

⎫
⎬
⎭

2 Constraints

A function of both v and w

max
v,w
vTCXYw v = 1, w = 1Subject to 

Problem
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Solution: Using two Lagrange multipliers,

(vo ,wo ) = argmax
v,w

vTCXYw−
1
2
λv (v

Tv −1)− 1
2
λw(w

Tw−1)
⎧
⎨
⎩

⎫
⎬
⎭

The necessary conditions for v and w to maximize the correlation are:
∂
∂v

= 0 ⇒ CXYw− λvv = 0
∂
∂w

= 0 ⇒ (CXY )
T v − λww = 0(35) (36)

Note that by definition: . (CXY )
T = CYX
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Solution: Using Lagrange multipliers,

(vo ,wo ) = argmax
v,w

vTCXYw−
1
2
λv (v

Tv −1)− 1
2
λw(w

Tw−1)
⎧
⎨
⎩

⎫
⎬
⎭

The necessary conditions for v and w to maximize the correlation are:
∂
∂v

= 0 ⇒ CXYw− λvv = 0
∂
∂w

= 0 ⇒ (CXY )
T v − λww = 0(35) (36)

Note that by definition: . 

From (36),                             . Substituting this in (35) yields. w = 1
λw
CYXv CXYCYXv = λvλwv

(CXY )
T = CYX

This implies that vector v is an eigen vector of matrix CXYCYX

Similarly, from (35)                                  . Substituting this into (36) yieldsv = 1
λv
CXYw CYXCXYw = λvλww

This implies that vector w is an eigen vector of matrix CYXCXY
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Note that in both cases the eigenvalue is the same : λvλw

CXYCYXv = λvλwv CYXCXYw = λvλww

We can show that λv = λw

vTCXYw− λvv
Tv = 0 ∴λv = v

TCXYw

wT (CXY )
T v − λww

Tw = 0 ∴λw = w
T (CXY )

T v = vT (CXY )w = λv

Pre-multiplying         to (35), 

Pre-multiplying         to (36), 

vT

wT

∴λv = λw

CXYCYX CYXCXYand                        have the same eigenvalues. λv = λw = λ

CXYw− λvv = 0

(CYX )
T v − λww = 0
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Singular Value Decomposition
A matrix can be decomposed to 

A =VDWT

V = v1 v2 ! vm⎡
⎣

⎤
⎦ ∈ℜ

m×m

A∈ℜm×ℓ

where

vi = the i-th left singular vector of matrix A
= the eigenvectors of matrix , 

which is a real, symmetric matrix   having  
all real eigenvalues and eigen vectors.

AAT ∈ℜm×m

W = w1 w2 ! wm⎡
⎣

⎤
⎦ ∈ℜ

ℓ×ℓ

wi = the i-th right singular vector of matrix A
= the eigenvectors of matrix , 

which is a real, symmetric matrix   having  
all real eigenvalues and eigen vectors.

AT A∈ℜℓ×ℓ

D =

s1 0 ! 0

0 s2 "

" # "
0 ! ! sℓ
0 ! ! 0
" "
0 ! ! 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

∈ℜm×ℓ

: a rectangular 
diagonal matrix

si = the i-th singular value of matrix A
= the square root of the non-zero eigenvalue 

of matrix , or , both 
are real-symmetric, positive semi-definite 
matrices with non-negative eigenvalues.

AAT ∈ℜm×m AT A∈ℜℓ×ℓ

--- Extension of Eigen Decomposition
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Theorem
The unit vectors, v0 and w0 , that maximize the correlation between input and output 
scores, and , are the left and right singular vectors, respectively, 
associated with the largest singular value of the cross-correlation matrix           .

z = vT x r = wT y
CXY

CXY = v1!!⎡⎣ ⎤⎦

s1 ! 0

" * 0
0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w1
T

"
"

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

CXYCYX ;m×m

CYXCXY ;ℓ× ℓ

s1 ≥ s2 ≥!

of matrix

The square root of the largest eigenvalue of 
or

CXYCYX
CYXCXY

The first left eigen vectors of 
matrix

The first right eigen vectors

The first (largest) singular value
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Step 2. Optimal Prediction with One Latent Variable

x !
z=vT x

zHigh-dimensional 
input vector

Input score: 
scalar

Input score z

y
output

ŷ = qz

q∈ℜℓ×1
ŷ ∈ℜℓ×1

Parameters to 
determine

q In Step 1 we have found the component of the input space that is most correlated with the 
output;

qWe now predict output y based on the score, 

Optimal Prediction

ŷ = qoz

qo = argmin
q
E[ y − ŷ

2
]

It is conceivable that this optimal coefficient/parameter vector q0 is in the same direction 
as unit vector w.
(This is a problem involved in the next assignment.)

z = vT x
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Obtaining optimal q0

ŷ = qz = qvT x

E[( y − ŷ)T ( y − ŷ)] = E[( y − qvT x)T ( y − qvT x)]

= E[yT y − 2yTqvT x + xTvqTqvT x]

= E[yT y − 2vT xyTq + vT xxTvqTq]

= E[yT y]− 2vT E[xyT ]q + vT E[xxT ]vqTq
The necessary conditions for optimality

d
dq

= 0 −2E[yxT ]v + 2qvT E[xxT ]v = 0
CYX ;ℓ×m CXX ;m×m

∴ qo =
CYXv

vTCXXv

Note that x and y are random 
variables, v and q are not.

This is called Output Loading Vector.
(We omit superscript o hereafter.)
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Step 3. Deflation
qWe have found just one set of latent variables associated with the highest correlation 

between input and output.
qBut, an accurate prediction cannot be obtained with just one set of latent variables. Now 

we want to find the components of the second and the third highest correlation.
qThe singular Value decomposition of the cross-correlation matrix, however, does not 

directly give the second and the third most significant latent variables.

qTo overcome this difficulty, we have to go through the procedure called “Deflation’.

CXY = v1 v2!⎡⎣ ⎤⎦

s1 ! 0

" s2 0

0 0 #

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w1
T

w2
T

"

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

These do not provide the latent variables that 
are second most significant (correlated).
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qPredicting output y based on the first set of latent variables, we have used 
some components involved in the data matrix;

qThis component of data matrix must not be used for determining the 
second most significant component;

qWe have to remove the components already used in the first round 
prediction, and examine the residual components that have the highest 
correlation with output.

qOutput data

X ' = X − (components used in the 1st round)

y’ = y – (the component used for the first round output prediction)

Original 
data

Residue

q The deflation of input data matrix is a bit more involved. Collectively, we can write

Deflation

y ' = y − zq
qUsing the output loading vector q, the deflated output vector is given by
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Input Data Deflation: Finding the components used in the 1st round

X = x(1) ! x(N )⎛
⎝

⎞
⎠ =

x1
(1) ! x1

(N )

" " "

xm
(1) ! xm

(N )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

ξ1
"
ξm

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

z(1) ! z(N )⎛
⎝

⎞
⎠ = Z

q The input data matrix can be written as a collection of row vectors, 

q The score of each data point from x(1) to x(N) can be collectively represented as 

q Plot Z in N-dimensional space together with

q The direction of vector Z indicates the distribution of scores among the 
N data points at which the first round latent variables have extracted 
information from the original data for predicting the output.

q We need to delete these components already used in the first round. 
q Projecting    onto the plane perpendicular to vector Z yields

ξ1,!,ξm

ξi

ξ1
ξ2

ξm

Zξi
'

ξi

ξi
ZT

Z

ξi
' = ξi −ξi

ZT

Z
⋅ Z
Z

= ξi I −
ZTZ

Z 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ Or collectively, X ' = X I − Z

TZ

Z 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Data-1

Data-2

Data-N

Note that vectors Z and      are 
row vectors.

ξi

DirectionMagnitude

z = vT x

O

A

B
C

OB
! "!!

= OA
! "!!

−OC
! "!!
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X ' = X I − Z
TZ

Z 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

q Note that

q Therefore

q The above deflated data matrix can be written as 

Z = z(1) ! z(N )⎛
⎝

⎞
⎠ = vT x(1) ! vT x(N )⎛

⎝
⎞
⎠ = v

T X

Z 2
= ZZT = vT XXTv ≅ vTCXXv

X ' = X I − Z
TZ

Z 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= X − 1

vTCXXv
XZTZ = X − 1

vTCXXv
XXTvvT X

= X − 1
vTCXXv

CXXvv
T X = I −

CXXvv
T

vTCXXv

⎛

⎝
⎜

⎞

⎠
⎟ X

q For each column vector 

Input Loading Vector

q Let us rewrite

x ' = I −
CXXvv

T

vTCXXv

⎛

⎝
⎜

⎞

⎠
⎟ x = x −

CXXv
vTCXXv

vT x = x − p ⋅ z

p =
CXXv
vTCXXv

where Is called Input Loading Vector.
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x ' = x − zp = x − pvT x = (I − pvT )xpo = argmin
p
E[| x ' |2]

= argmin
p
E[xT (I − pvT )T (I − pvT )x]

= argmin
p
E[xT x]− 2pT E[xxT ]v + pT pvT E[xxT ]v{ }

Necessary conditions for min.
d
dp

= 0 2CXXv + 2pv
TCXXv = 0 ∴ po =

CXXv

vTCXXv

Question: 
Why is p not aligned 
with v?

If CXX is the identity 
matrix, v and p are 
aligned. However, the 
data are distributed 
not uniformly over the 
input space: 
CXX ≠κ I

Input Deflation x ' = (I − povT )x = I −
CXXvv

T

vTCXXv

⎛

⎝
⎜

⎞

⎠
⎟ x Output Deflation : y ' = y − zqo

Properties of the Deflated Input Data Matrix and the Input Loading Vector
We can show that, with the input loading vector p, the deflated data matrix becomes the smallest. 

This is the same as the input loading vector. Therefore, the loading vector 
minimizes the deflated data matrix. In other words, the 1st round latent 
variables have taken the most information.
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Deflated Covariance and Cross-Covariance Matrices                 and

To compute the second set of latent variables, we need                              

for the deflated input and output data.

Similarly,

C 'XX C 'YX

C 'XX = (I − pvT )CXX

C 'YX = E[y '(x ')T ]C 'XX = E[x '(x ')T ]

C 'XX = E[(I − pvT )xxT (I − vpT )] ← x ' = (I − pvT )x

= (I − pvT )E[xxT ](I − vpT )

= CXX − pvTCXX −CXXvp
T + pvTCXXvp

T

= CXX − pvTCXX ← pvTCXXv = CXXv, p =
CXXv

vTCXXv

C 'YX = CYX (I − vp
T )
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Partial Least Squares Regression : Summary
The most significant m* sets of latent variables are obtained recursively,

CXX [k +1] = (I − p[k]v
T [k])CXX [k];

CYX [k +1] = CYX [k](I − v[k]p
T [k]);

x = z[k]p[k]
k=1

m*

∑ + x[m*]

CXX [1] = E[xx
T ], CYX [1] = E[yx

T ]

For k = 1 to m*

q[k] =
CYX [k]v[k]

v[k]T CXX [k]v[k]
p[k] =

CXX [k]v[k]
v[k]T CXX [k]v[k]

y = z[k]q[k]
k=1

m*

∑ + y[m*]

With these loading vectors,  x and y can be approximated to 
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Example
Sample Data (sample size = 100)

3D input 2D output

x1

x2

x3

y1

y2
Data are generated with the linear model 
+ Gaussian noise

Input Covariance Input-Output Cross-Covariance

True relationship
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3D input
2D output

x1

x2

x3

y1

y2

w(1)

q(1)
v(1)

p(1)

First Round Latent Variables

CXY = v1!!⎡⎣ ⎤⎦

s1 ! 0

" * 0
0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w1
T

"
"

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

p =
CXXv
vTCXXv

q =
CYXv
vTCXXv

Singular Value Decomposition 
of the cross-correlation 

matrix
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100 sample points
before deflation

w(1)

v(1)

q(1)

p(1)
v(2)

w(2)

Noise 
Variance

Partial Least Squares Regression

The original data are deflated in the direction of  p(1)
for input and that of  q(1) for output.

The 2nd round latent 
variables completely 
extracted all meaningful 
information, leaving only 
measurement noise.
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Applications of Partial Least Squares Regression (PLSR)

qChemistry

qBiology

qBiomechanics

qRobotics

qSocial Science
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Applications of Partial Least Squares Regression (PLSR)

qChemistry

qBiology

qBiomechanics

qRobotics

qSocial Science



The robot arms are back-drivable.



Human 1 hand trajectories Human 2 (Robot) hand trajectories

tt-k tPrediction

Extracting Coordinated Control Laws from teaching data by using 
Partial Least Squares Regression

High-dimensional input space

x = (3 axes of acceleration and
3 axes of angular velocity 
of both hands at time t;
------------------- at time t-1;
-------------------
------------------- at time t-k)

y = (4 joint angles of right robot arm
4 joint angles of left robot arm at time t)

Output joint displacements may be 
collinear and correlated to each other.

1

N

æ ö
ç ÷

= =ç ÷
ç ÷
è ø

x
X

x
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N

æ ö
ç ÷
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Y
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! 100 x  8



Human 1 hand trajectories

tt-k

Human 2 (Robot) hand trajectories

t

Prediction
3 components can 
explain 85% of the 
data.



Partial Least Squares Regression: Mode 1

Input

Output



Partial Least Squares Regression: Mode 3

Input

Output



Mode 1

Mode 2

Mode 3

IMU
Human

Measurement
Robot Action



Mode 1

Mode 2

Mode 3

IMU
Human

Measurement
Robot Action



Concluding Discussion

• Dealing with high-dimensional input and output spaces is an 
important challenge with many practical applications of today’s 
interest. 
• PCR and PLSR are linear predictors, but as we use more input and 

output variables, some nonlinearities can be well captured with the 
high-dimensional linear regression.
• We will revisit high-dimensional spaces in Part 4. Specifically, it is 

closely related to extended feature space, kernel trick, and lifting 
linearization based on Koopman Operator and Dual-Faceted 
Linearization of nonlinear dynamical systems.

36


