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Gaussian Processes in a Nutshell

A Gaussian Process is a 
non-parametric, nonlinear 
regression, providing a 
stochastic model.

x

y

x*

?

Given Data

qA few data points are given.
qWant to find an output value y* 

in response to a test point x*

y*

Quadratic, cubic, or 
non-parametric
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Gaussian Processes in a Nutshell

Nonlinear Regression

x

y

x*

?

A

B

C

D

xC

q If x* is close to xC, output y(x*) should 
be close to yC.

qAs x* gets further from xC, the output 
may differ from yC, and become more 
uncertain (unpredictable).

qDistal point D as well as points A and 
B, too, influence the prediction of 
output in response to x*.

qHow can we find a likely y(x*)? More 
importantly, its mean and variance: 
the distribution of y(x*)?

qGaussian Process regression can
answer these questions.

yC

y(x*) 
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Gaussian Processes in a Nutshell
Geostatistics

x

y
qGeostatistics is a branch of 

statistics dealing with spatial 
or spatiotemporal data.

qHistorically, Gaussian
Process came from 
geostatistics for mining.

qNow it is applied to petroleum 
geology, hydrogeology, 
oceanography, geochemistry, 
environmental control, and 
more.

qThe basic theory and 
techniques are applied to 
machine learning and system 
dynamics & control.

?

x*
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Gaussian Processes

Machine Learning

§ Given training sample data

§ Predict output mean and
covariance for new points

System Identification and Control

§ Combined with various model 
structures of dynamical systems, 
Gaussian Processes provide us 
with nonlinear system identification 
framework.

Nonlinear ARX Model (GP-NARX)

u(t)
u(t-1)

u(t-nb)

y(t-na)

y(t-1)

Gaussian
Process
Model

ŷ(t)

v(t)

Regressor
x
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Gaussian Processes in a Nutshell
q Suppose that random variables x1 and x2

are jointly Gaussian.
q Note x1 and x2 are correlated.

x

y

x2x1

p(x1,x2 ) =
1

(2π detΣ)
exp − 1

2
(x1,x2 )Σ

−1 x1
x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Σ = 1 0.8
0.8 1

⎛

⎝⎜
⎞

⎠⎟
x2

x1

§ Suppose that x1 = a is 
observed.

§ Find the conditional 
probability distribution:

§ It turns out that the 
conditional distribution is 
also Gaussian.

p(x2 | x1)
a

x2 | x1 ∼ "(µ*,Σ*)

µ *
Σ*
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Gaussian Processes in a Nutshell p(x1,x2 ) =
1

(2π detΣ)
exp − 1

2
(x1,x2 )Σ

−1 x1
x2

⎛

⎝
⎜
⎜
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⎠
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⎟

Σ = 1 0.8
0.8 1

⎛

⎝⎜
⎞

⎠⎟x2

x1
a

x2 | x1 ∼ "(µ*,Σ*)

µ *
Σ*

x2

x1a
µ *

Σ*

Σ = 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

µ* = 0
Note that the 

conditional mean is 
shifted upwards.

Note that x1 and x2 are 
uncorrelated. They are 
independent.

p(x1,x2 ) = p(x1)p(x2 )

Observation of x1
does not influence x2.
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x

y

x1 x2 x3 x4 x5

Σ =

1 0.9 0.7 0.4 0
0.9 1 0.9 0.7 0.4
0.7 0.9 1 0.9 0.7
0.4 0.7 0.9 1 0.9
0 0.4 0.7 0.9 1
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x1
x2
x3
x4
x5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎟
⎟

∼ "(µ,Σ)

Gaussian Processes in a Nutshell

qWhat if we consider an 
uncountable infinite number of 
random variables?

q Instead of using index 1,2,…., 
we use a variable x, which takes 
a continuous real number.

qThe vector becomes a function 
in a Hilbert space.

x1
x2
!
!

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

f (x)

5 random variables are jointly Gaussian.
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Definition of Gaussian Process
A Gaussian process is a type of random process: a collection of random variables, 
any finite number of which have a joint Gaussian distribution.

x

f (x)

Real continuous number

x1 x2 x3x*

?

q Consider a finite number of random variables 
taken from a Gaussian process, and place them 
in a vector f.

f ∼ "(µ,Σ)
q Also consider a set of test points placed in 

another vector f*, which we want to predict. 
Collectively, these random variables are jointly 
Gaussian.

f
f *

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∼ "

µ
µ *

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
, Σ C
CT Σ*

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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q Suppose that f are observed. Based on 
the observation, find f*, namely, obtain the 
conditional distribution of f*.
p( f * | f )

q This can be obtained by using the following 
Gaussian Identity.

f
f *

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∼ "

µ
µ *

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
, Σ C
CT Σ*

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Gaussian Processes in a Nutshell

f * | f ∼ " µ *+CTΣ−1( f − µ), Σ*−CTΣ−1C( )
q Usually, means, µ and µ*, are set to zero.

f * | f ∼ " CTΣ−1 f , Σ*−CTΣ−1C( )

:  Posterior distribution

q The posterior mean shifts to
m( f * | f ) = CTΣ−1 f

q The posterior variance     The prior variance

Σ*−CTΣ−1C

Prior variance
Reduction in uncertainty 
due to observations

qJointly Gaussian distribution: Before 
conditioning f* on f, the joint distribution 
has the following mean and 
covariance, called “Prior”.

≤
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x

f (x)

x1 x2 x3x*

?

+/- 2 s

m( f * | f ) = CTΣ−1 f

Σ*−CTΣ−1C
Confidence Interval

Gaussian Processes in a Nutshell

PS #6 Problem 3-c)
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1. To make it easier, consider a function with 
linear parametric representation:

f (x) = xTw
where x ∈ℜn

f :ℜn→ℜ, a scalar function,

w∈ℜn

and w is a random variable.

,
y = f (x)+ ε

where e is additive noise: independent, 
identically distributed (iid) Gaussian.

qData matrices:

X = ( x1 x2 ! xN ), Y = y1 y2 ! yN( )T
Combining these, D ={X ,Y}

ε ∼ "(0,σ n
2 )

Outline: Roadmap

qProblem formulation: Noise must be 
considered in observation. We formulate 
the following noise corrupted observation 
model.

weight vector

qNote that both e and f are random. The 
latter f is a random process indexed with x.

2. We will expand the linear regression 
using kernels.

3. Finally, we will obtain a general case, 
which is non-parametric. 
§ Gaussian Process: f (x) in a Hilbert 

Space.
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23.1 Linear Parametric Model

qConsider the probability of observing Y, 
given a weight vector w and input X. The 
only random variable is e in this case. 
Since the observation noise e is 
independent and identically distributed, 
we can write: 

p(Y | X ,w) = p( yi | xi ,w)
i=1

N

∏

= 1

2πσ n
exp −

( yi − xi
T w)2

2σ n
2

⎛

⎝
⎜

⎞

⎠
⎟

i=1

N

∏

= 1
(2πσ n

2 )N /2
exp −

( yi − xi
T w)2

2σ n
2

i=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

qTherefore, this conditional probability 
distribution is Gaussian with mean XTw and 
variance

p(Y | X ,w)∝ exp − |Y − XTw |2

2σ n
2

⎛

⎝
⎜

⎞

⎠
⎟ ∼ "(XTw,σ n

2I )

σ n
2I

I is the identity matrix of order N.
(A)

y = f (x)+ ε

ε ∼ "(0,σ n
2 )

qGiving a specific structure to f (x) will be 
easier in considering Gaussian Process.

X = ( x1 x2 ! xN ),

Y = y1 y2 ! yN( )T

f (x) = xTw w : Random variable

ε = y − f (x)
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The Posterior Distribution of Weight w
q Our objective is to obtain the distribution of f,

which depends on weight vector w:
q Let us obtain the distribution of w from data D by 

using Bayesian Inference (based on Bayes’ Rule).
q Assuming that the prior of weight distribution is 

zero-mean Gaussian.

w ∼ "(0,Σ p ) where Σ p = E[ww
T ]

p(w) = 1
(2π detΣ p )

n/2 exp − 1
2
wTΣ p

−1w
⎛
⎝⎜

⎞
⎠⎟ (B)

q Recall Bayes’ Rule

p(x | y) = p( y | x)p(x)
p( y)

(posterior)     (likelihood) x (prior) ∼
Replacing x by w and y by Y, 

p(w |Y ,X ) ∼ p(Y | X ,w)p(w)

p(w | X ,Y ) ∼ exp − |Y − XTw |2

2σ n
2

⎛

⎝
⎜

⎞

⎠
⎟ exp − 1

2
wTΣ p

−1w
⎛
⎝⎜

⎞
⎠⎟

= exp − 1
2σ n

2
(YTY − 2YT XTw+ wT XXTw)− 1

2
wTΣ p

−1w
⎛

⎝
⎜

⎞

⎠
⎟

q We can reduce the above expression to the following 
quadratic form.

p(w | X ,Y ) ∼ exp − 1
2
(w− w)T A(w− w)

⎛
⎝⎜

⎞
⎠⎟

§ Comparing the right-hand sides of the above expressions, 

§ Note that, since Y is given,  exp(constant x YTY) is a 
constant that does not affect the above equations.

where A = XXT /σ n
2 + Σ p

−1

1
σ n
2 w

T XY = wT Aw,∀w∈ℜn

From (A) and (B),

∴w = 1
σ n
2 A

−1XY

f (x) = xTw

(A) (B)



15

p(w | X ,Y ) ∼ exp − 1
2
(w− w)T A(w− w)

⎛
⎝⎜

⎞
⎠⎟

w = 1
σ n
2 A

−1XY

Output prediction in response to test point input x*
q In summary, given data D = {X,Y} with noisy 

observation, the posterior distribution of 
parameter w is a Gaussian distribution with the 
following mean and covariance:

A = 1
σ n
2 XX

T + Σ p
−1

q Now a test point x* is given, what is the expected 
output y*?

y = xTw+ ε
Note that both w and e are random variables. 
Output y* can be reached through many 
combinations of w and e values. Recall the  
Chapman-Kolmogorov equation.

p( y* | x*,X ,Y ) = p( y* | x*,w)p(w | X ,Y )dw∫

q Computing this, we can find that the predictive 
distribution of y* is Gaussian, again.

p( y* | x*,X ,Y ) ∼ "(x*T w,x*T A−1x*)
q The mean of y* is the posterior mean of weight.  

Multiplied by the test input x*:

y*= x*T w
q The predictive variance is the quadratic form of the 

posterior covariance evaluated at x*.

σ*= x*T A−1x*

exp − 1
2σ n

2
( y − x*T w)2 − 1

2
(w− w)T A−1(w− w)

⎛

⎝
⎜

⎞

⎠
⎟

y*= x*T w← w← (X ,Y )q Namely,
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23.2 Kernel Trick

q So far, we used a linear parametric model, but the input x can be projected to a 
high dimensional feature space.

q The Kernel Trick is applicable to Gaussian Process.

q Define

q The test point distribution is now given by

x =

x1
x2
!
xn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

∈ℜn → ϕ(x) =

x1
x2
x1x2
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

∈ℜmExample:
f (x) = xTw → f (x) =ϕ(x)T w

Φ(X ) = ϕ(x1),!,ϕ(xN )( )∈ℜm×N

p( y* | x*,X ,Y ) ∼ " 1
σ n
2 ϕ(x*)

T A−1Φ(X )Y , ϕ(x*)T A−1ϕ(x*)
⎛

⎝
⎜

⎞

⎠
⎟

where A = 1
σ n
2 Φ(X )Φ(X )

T + Σ p
−1 ∈ℜm×m

w∈ℜm , m > nNow
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Inverse Computation

q One drawback of the above nonlinear regression based on Gaussian Process is 
that it entails the inversion of matrix A, which can be of high dimension.

q Inversion of m-by-m matrix, however, can be reduced to the inversion of N-by-N 
matrix by using the following matrix:

A = 1
σ n
2 Φ(X )Φ(X )

T + Σ p
−1 ∈ℜm×m

1
σ n
2 Φ(K +σ n

2I ) = 1
σ n
2 Φ(Φ

TΣ pΦ+σ n
2I ) = 1

σ n
2 ΦΦ

T ⋅ Σ pΦ+Φ

= (A− Σ p
−1) ⋅ Σ pΦ+Φ = A ⋅ Σ pΦ−Φ+Φ = AΣ pΦ

K = Φ(x)T Σ pΦ(x)∈ℜ
N×N

§ Consider
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Inverse Computation (Continued)

q Pre-multiplying A-1 and post-multiplying                    yields 

q Note that the matrix inversion of the left-hand side is m-by-m, while that of the 
right-hand side is N-by-N. (m > N)

q The mean of the posterior distribution can be computed 

q The covariance of the posterior can be reduced by using the Matrix Inversion 
Lemma:

1
σ n
2 Φ(K +σ n

2I ) = AΣ pΦ
p( y* | x*,X ,Y ) ∼ " 1

σ n
2 ϕ(x*)

T A−1Φ(X )Y , ϕ(x*)T A−1ϕ(x*)
⎛

⎝
⎜

⎞

⎠
⎟

(K +σ n
2I )−1

1
σ n
2 A

−1Φ =Σ pΦ(K +σ n
2I )−1

1
σ n
2 ϕ(x*)

T A−1Φ(X )Y =ϕ(x*)T Σ pΦ(K +σ n
2I )−1

ϕ(x*)T A−1ϕ(x*) =ϕ(x*)T Σ pϕ(x*)−ϕ(x*)
T Σ pΦ(K +σ n

2I )−1ΦTΣ pϕ(x*)
Prove this on your own.

The posterior distribution (after observations are taken.)
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Covariance Kernels

q In the above expression,           and            show up in quadratic form 

q Note that matrix                       is positive-definite and symmetric. Therefore, a 
kernel exists!

q Matrix Sp is decomposed to 

p( y* | x*,X ,Y ) ∼ " ϕ *T Σ pΦ(K +σ n
2I )−1, ϕ *T Σ pϕ *−ϕ *

T Σ pΦ(K +σ n
2I )−1ΦTΣ pϕ *( )

where

ϕ(xi )

ϕ*=ϕ(x*),Φ = Φ(X ) = (ϕ(x1),!,ϕ(xN ))

ϕ(x)T Σ pϕ(x ')

Σ p =VDV
T V = v1!vm( ), D =

λ1 0

!
0 λm

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

, λi > 0

q The posterior distribution of the output in response to input x*

ϕ *
where x and x’ are wither x* or xi.

Σ p = E[ww
T ]

where

ϕ(x)T Σ pϕ(x ')→ <ψ (x),ψ (x ') > Inner Product
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Covariance Kernels

q Define

ψ (x) ψ (x ')

ϕ(x)T Σ pϕ(x ') =ϕ(x)
TVD1/2

ψ (x)T
! "# $# ⋅D1/2V Tϕ(x ')

ψ (x ')
! "# $# = <ψ (x),ψ (x ') >

ψ (x) = D1/2V Tϕ(x),   where  D1/2 =

λ1 0

!

0 λm

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,

q The quadratic form can be written as an inner product of          and             .

qA kernel function is defined for the covariance matrix:

qThis type of kernel is called a covariance kernel.
q If an algorithm is given solely in terms of inner product, the kernel is more important 

than the corresponding feature space, which may be of infinite dimension.

k(x,x ') ! <ψ (x),ψ (x ') >

a square root matrix
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23.3 Gaussian Processes in Hilbert Space (Function Space)
q The posterior distribution of output has been obtained for the parametric model:

q However, the mean and variance of the posterior distribution can be written with 
respect to covariance kernels k(x, x’), where the expanded features j(x) are not 
explicitly involved.

q This allows us to represent and analyze Gaussian processes without use of 
parametric models. Instead, exploiting kernels we can formulate a gaussian 
process directly in function space where a kernel, that is, an inner product is 
defined. Namely, Gaussian processes are defined in Hilbert Space.

q A Gaussian process is completely specified by its mean and covariance (kernel) 
functions.

q Then we write the Gaussian process as

f (x) =ϕ(x)T w

m(x) = E[ f (x)]
k(x,x ') = E[( f (x)−m(x))( f (x ')−m(x ')]

f (x) ∼GP(m(x),k(x,x '))



22

Gaussian Processes in Hilbert Space
q If the function f(x) has a linear-parametric representation, f(x) = j (x)Tw,

E[ f (x)] =ϕ(x)T E[w] = 0
E[ f (x) f (x ')] =ϕ(x)T E[wwT ]ϕ(x ') =ϕ(x)T Σ pϕ(x ')

=ψ (x)Tψ (x ') = k(x,x ')
§ Note that parameter w is mean-zero, and the covariance is a kernel function. Often 

times, the mean of a Gaussian process is set to zero :                                           .
qThe above argument implies that mean and covariance, the two quantities that 

completely characterize a Gaussian process, can be represented without use of 
feature vectors j (x).

qFor any finite number of input variables,                          , an NxN covariance 
matrix can be formed with kernel functions.

f (x) ∼GP(0, k(x,x '))

X = (x1,!,xN )

f (X ) =
f (x1)

!
f (xN )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
, cov[ f (X ), f (X )] = K (X ,X ) =

k(x1,x1) ! k(x1,xN )

! " !
k(xN ,x1) ! k(xN ,xN )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
∈ℜN×N
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Radial-Basis Function as a Covariance Kernel

qRadial-Basis Function is one of the most widely used kernel functions for 
Gaussian Processes.

k(x,x ') = exp −
x − x '

2

2ℓ2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

where parameter l is the characteristic length scale. 
In Radial-Basis Function Network, we used a slightly 
different expression with b = l and g = x’.   
If x = x’, the covariance kernel takes 1, the largest 
value.
As the characteristic length-scale l gets larger, the 
covariance is large in a wider range. 

qNote that this kernel can be decomposed to the inner product of feature vectors, but 
the vector is infinite in dimension, as we discussed previously in Kernel Trick. We do 
not care the original feature vector j (x).

ℓ

= small

= large

x’

ℓ

x x

1
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Prediction with Noise-Free Observations

q Our interest is to predict an output in response to a set of test inputs,                                                    
with a Gaussian Process tuned with training data,                          .

q First, let us consider the case where observations are noise free. The 
covariance matrix of the Gaussian process associated with inputs X and 
X* can be written as a block symmetric matrix of kernel functions.

X* = (x1
*,!,xN*

* )
X = (x1 ,!,xN )

f (X )
f (X*)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∼ " 0,K( ) , K =

K (X ,X ) K (X ,X*)
K (X*,X ) K (X*,X*)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∈ℜ(N+N *)×(N+N *)

q The prediction of f(X*), that is the Gaussian distribution with particular mean 
and variance, can be provided as the following posterior distribution by using the 
Gaussian Identity.

f * | X*,X ,Y ∼ "( f *, cov( f *))

Mean: f * = K (X*,X )K (X ,X )−1 f

Covariance: cov( f *) = K (X*,X*)− K (X*,X )K (X ,X )−1K (X ,X*)
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Prediction with Noisy Observations

q In realistic setting, observations are corrupted with noise.
q Assuming that observation noise e is independent and identically distributed 

Gaussian with variance       ,  the prior of noisy observations is given by

q Replacing K(X,X) by the above covariance, the joint distribution becomes.

cov( y) = K (X ,X )+σ n
2I

y(X )
f (X*)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∼ " 0,

K (X ,X )+σ n
2I K (X ,X*)

K (X*,X ) K (X*,X*)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

q Using the Gaussian Identity again, we can obtain the 
prediction of f(X*), 

f * | X*,X ,Y ∼ "(µ*,C*)

Mean: µ* = K (X*,X )(K (X ,X )+σ n
2 )−1Y

Covariance: C* = K (X*,X*)− K (X*,X )(K (X ,X )+σ n
2I )−1K (X ,X*)

σ n
2

Since the noise is independent, all the cross-terms are zero.

Compare this plot to 
the one in Slide 11.



26

Interpretation of the Predictive Mean

q The predictive distribution of f (x*) in response to a single test point x*. 
f * | x*,X ,Y ∼ "(µ*,C*)

Mean: µ* = K (x*,X )(K (X ,X )+σ n
2 )−1Y

where K (x*,X ) = k(x*,x1),k(x*,x2 ),!k(x*,xN )( )
q Making the following replacement, 

α1
!
α N

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
! (K (X ,X )+σ n

2 )−1Y

we can find that the mean is a linear combination of the kernels.
µ* =α1k(x*,x1)+α 2k(x*,x2 )+!+α N k(x*,xN )

k(x*,x1) k(x*,x3)

q Recall that kernels represent how similar or close two data points are. Depending on 
the nearness, the contribution from each training data point is evaluated.



Reflection
• Gaussian Process (GP) model is a nonlinear, non-parametric model.
• GP predicts outputs in response to test points as a conditional 

Gaussian distribution with mean and variance.
• The GP variance is expressed as a kernel matrix.
• Posterior mean is given by a 

linear combination of kernels representing the nearness (similarity) 
between a test point and training data points.

• Drawback: It is not effective for large data, since NxN matrix 
inversion is involved.

• Hyperparameter tuning is required.
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µ* =α1k(x*,x1)+α 2k(x*,x2 )+!+α N k(x*,xN )


