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H. Harry Asada
• Regularly teaches 

– 2.12/2.120 Introduction to Robotics
• Has taught

– 2.151 Advanced System Dynamics and Control
– 2.165 Robotics
– 2.004 Dynamics and Control
– 2.03J (2.003) Dynamics
– 2.14 Feedback Control
– 2.671 Measurement and Instrumentation
– 2.86 (2.008) Manufacturing

• Specializes in Robotics, Control, and Biological 
Engineering



H. Harry Asada
Ford Professor of Engineering

Wearable Extra Limbs

Human Augmentation: People can 
possess extra arms, legs, and fingers for 
augmenting and compensating for the 
physical and cognitive abilities.

Introduction to Robotics

Robotics provides students 
with clear, tangible, and 

graphical understanding of 
complex motion and     

underpinning math 
and physics. 
2.12:
Multi-disciplinary capstone course

Integrated cellular systems

Modeling & Computation 
of 3D cell migration

Optogenetic control of 
skeletal muscles

Bio-
Medical

Wearable Health 
Monitoring

MIT Ring





ABP Estimation
US Patent 6,413,223
US Patent 7,169,111

Fingernail
Sensors

US Patent 6,236,037
US Patent 6,388,247

Ring Sensor
US Patent 6,402,690
US Patent 5,964,701
US Patent 6,699,199

Driver 
MonitoringCable-Free Smart 

Vest

Wearable 
Goniometry

RHOMBUS
Hybrid Bed/Wheelchair
US Patent 6,135,228

Surface Wave Actuators
US Patent 5,953,773

Wearable Health
Monitoring

Ball-Wheel
Holonomic Wheelchair
US Patent 5,927,423

Health Chair
US Patent 6,947,781

Wireless Networking
US Patent 6,553,535
US Patent 7,376,105

Direct-Drive Robot
US Patent 4,425,818
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Biologically-Inspired Actuators
US Patent 7,188,473

Harry Asada 
An inventor

Broadcast FeedbackHigh Strain PZT
Modular Actuators



Teaching Style:
Theory for the User



• Not a fancy subject, like robotics and design subjects.
• But, if you wish to learn something fundamental, 

establish a sold foundation, or apply an analytical 
and/or mathematical methodology to your thesis 
research, you will find 2.160 to be a useful subject.

2.160 seeks deeper understanding, clear insights, 
scientifically sound methodologies, and practically useful 
techniques for modeling, estimation, and learning.



Cross-Disciplinary Study
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2.160 addresses diverse topics in a cohesive manner. These include 
system identification, estimation, prediction, inference, classification, 
and learning. Although the objectives are different among these topics, 
the underpinning theories, techniques, and algorithms are common to 
them. These have been established at the cross-disciplinary area of 
system dynamics, machine learning, and statistics.
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Input Output
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Input Output

G(q) =
b1q

−1 + b2q
−2 +!+ bnbq

−nb

1+ a1q
−1 + a2q

−2 +!+ anaq
−na

x(t +1) = Ax(t)+ Bu(t)+η(t)
y(t) = Cx(t)+ Du(t)+υ(t)

System
Identification

Learning

Prediction

Estimation

Classification

Inference

Put all in one subject, 25 lectures
2.160



Class
• Synchronous Lecture on Zoom
• Monday and Wednesday: 1:00 pm – 2:30 pm
• All lectures are recorded and posted for your review.
• Lecture slides will also be posted.

General Course Information



Lecture Notes

• Will be provided for (almost) every lecture
• Intuitive and helpful for understanding 

fundamental concepts
• Intensive and extensive: covering a lot of topics
• Examples
• Background materials and review
• Read them before going to reference books



No Formal Exams

• You will not have formal exams: no mid-term, no final 
exam;

• Instead, you will work on 4 Context-Oriented Mini Projects
and 6 homework assignments.



Grading
• Context-Oriented Projects* 50%

(4 projects)
• Homework Assignment* 40 %

(6 assignments)
• Participation** 10%

Total 100%

* Assignments will be given mostly on Monday, and will be 
due in the following week.

** Participation in study group meetings and active
engagement with lectures



Study Group Meetings
• Student groups, each consisting of 6~8 students, will be 

formed.
• Each group will meet weekly on Friday for

– Discussing Context-Oriented Mini Projects and Homework 
Assignments, and

– Review and recitation of lecture materials
• TA, Nick Selby, and/or Professor Asada will participate in

each study group meeting.
• Schedule will be discussed later.



Ethics
• Use of problem set solutions of previous terms is strictly 

prohibited.
• Students are encouraged to discuss problem assignments 

with one another. However, each student must submit 
his/her own solution to each problem set and mini project.



In Case of Difficulty,…
• Contact Professor Asada and the Student Support 

Service office.
• One assignment relief: You can skip one homework 

assignment without penalty.
• Late submission of one Mini Project without penalty
• Prior notification to Professor Asada is required.
• Your mental and physical health is more important 

than your work performance.

Eliminate the lowest score PS.PS Grading

Counted toward the final grade.

75, 85, 90, 67, 65,and 25



Learning Management System

• We will use Canvas + Panopto
– These tools are still relatively new to the MIT community.
– We will also use Stellar in the beginning. All the lecture notes, 

handouts, lecture slides, assignments will be posted on Stellar.
– We will move to Canvas as we get familiarized with the new 

system. This may occur before the first due date of assignment.
– TA will make clear announcements what to do.



History, Theory, Key Concept, Application, Projects



Part 1:  Regression
…5 lectures

Part 2: Kalman and Bayes Filters
…6 lectures

Part 3: System Identification of Linear Dynamical Systems
…6 lectures

Part 4: Machine Learning and Nonlinear System Modeling
…7 lectures
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1 1 2 2j j j jm my a x a x a x= + + +!!!

Find input-output relationship.

Estimate parameters :  an ill-posed question(?) 1, , ma a!!
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1 1 2 2j j j jm my a x a x a x= + + +!!!

Estimate parameters :  an ill-posed question(?) 1, ,j jma a!!

1x 2x

mx

ix

Input variables may be collinear;
The input data set may not contain samples in 
some directions in the input space 
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Extracting significant variables from the input data

Regress output y on latent variables, 
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Principal Component Regression: 
an example of latent variable method

Mean-centered Input Data Set
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Lecture 5



A drawback of Principal Component Regression is that Components with a large 
eigenvalue in the input space are not necessarily significant for predicting the 
output; small eigenvalue components may be more correlated with the output.

v
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nx
Input space

i-th sample
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Output space
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Find a pair of unit vectors,                              , such that the correlation between                            
and                   becomes maximum.
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The optimal v and w are the left 
and right singular vectors 
associated with the largest singular 
value of Cross-Covariance 

[ ]TXYC E= xy à SVD

Lecture 6

Singular-Value Decomposition



Where are these methods used?



What if the data are obtained one 
by one sequentially?

Optimal a and b based on 
the first 4 samples

y

x

Sample 1

Sample 2

Sample 6

y

x

Sample 1

Sample 4

y

x

Sample 1

Sample 2

Sample 5
New data

New data

Optimal a and b based on 
the first 5 samples

Question: Do I need to 
compute a and b from 
scratch?
Answer: No, only small 
changes                  must be 
made, given a new sample.

 and a bD D

y ax b= +

y ax b= +
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Astronomy influenced
Math & Science

Gauss observed the movement of planets nightly  
and discovered the celebrated

Recursive Least Squares Algorithm

33



Recursive Least Squares
q Recursively estimate parameters involved in the model.
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This Recursive Least Squares Algorithm was originally developed by 
Gauss (1777 – 1855)

θ̂(t) = θ̂(t −1)+Κ t y(t)− ŷ(ϕ ,θ )
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A type of gain for correcting the error
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Lecture 3
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Smart traction + suspension control

Plant

Parameter 
Estimation

Adaptation
Law

Feedback
Control

θ̂

ϕ(t) y(t)

Indirect Adaptive Control

Road conditions may vary.

Recursive Least Squares inside



Kalman Filter

Physical
Process

Kalman Gain &
Covariance Update
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Random Processes
Correlation

Orthogonality

Power Spectrum Covariance



Random Variables and Random Processes

 
Figure 4-5 Noise characteristics 
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Math Policy: 
Necessary math will be introduced/reviewed when needed / as needed.
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Lecture 4
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Adaptive Noise Cancellation: An Application of Random Processes

Main

Main

Background

Background

Microphone 1

Microphone 2

Interference
Dynamics

Adaptive
Filter

True Signal

Noise
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ŵ(t)

z(t)+
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+
_

y(t) = x(t)+ w(t) z(t) = y(t)− ŵ(t)



Context-Oriented Project #1:
Active Noise Cancellation for Wearable Sensors

 

Signal Source

Disturbances,
Motion

Sensor (PPG)

Corrupted 
signal

Body motion

Recovered 
Signal

Active 
Noise 

Cancellation

MEMS 
Accelerometer

PPG

Accelerometer

Asada, et al 2001

Apple iWatch



Swinging

Acceleration

Active Noise Cancellation

Motion Corrupted Signal

Correct Signal

Recovered SignalStationary

Orthogonality of two signals
E[XY] = 0



Kalman Filter Framework

Real 
System Sensors
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[Confidence of Previous Estimate] [Noise Variance]
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Lecture 7



Vehicle Localization Problem:
Finding where it is now.

Model = What we know about the robot 
and the environment.

Vehicle Dynamics: F mx= !!
x

We can predict the vehicle position by 
simulating the dynamic equation.

Because of disturbance 
and noise, it may have 
some error.
F mx w= +!!

Process Noise 43



Measurement Noise

Landmark

t t ty y v= +

Measurement Noise

Mean = 0, Variance = 2s

s

Experimentally determined 44
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Kalman Filter Framework

Real 
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Lecture 7
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Rudolf E. Kalman

Simultaneous Localization And Mapping (SLAM)

Self-Driving Car

Moon Shot

Kalman Filter applied to the Apollo Moon Mission



Discrete-Time Kalman Filter

Kalman-Bucy Filter
(Continuous-Time)

Matrix Riccati Equation

Linear Plant Dynamics
Gaussian Distribution

Nonlinear Dynamics

Extended Kalman Filter
Unscented Kalman Filter Non-Gaussian Distribution

Bayes Filter

Particle Filter

Monte Carlo Simulation
Sampling Technique

Optimality

Linear Dynamics
Gaussian Distribution

Kalman Filter

Lecture 7, 8

Lecture 9

Lecture 10

Lecture 12

Part 2 Kalman and Bayes Filters



48Professor John Leonard

Visual SLAM
Simultaneous Localization and Mapping

Lecture 11



Robot Localization 
and Navigation
Using advanced 
Kalman Filters:
Extended KF
Unscented KF
Bayes filter
Particle filter
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Physical Modeling : 2.151/2.140, 2.032, 2.004, 2.003, etc.

1. Passive elements: mass, damper, spring
2. Sources
3. Transducers
4. Junction structure

Physically meaningful parameters
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Mathematical models of real-world systems are often 
too difficult to build based on first principles alone.

Physical Modeling:
Too complex to model

Biological Systems

Fluid-thermal
Systems

Energy Systems
(Building HVAC)Smart Grid



Black Box
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Input u(t) Output y(t)

Find a model structure and determine parameter values
that fit the data.

System Identification;
“Let the data speak about the system”.



Pros
1. Physical insight and knowledge
2. Modeling a conceived system before hardware is built

Cons
1. Often leads to high system order with too many 

parameters
2. Input-output model has a complex parameter structure
3. Not convenient for parameter tuning
4. Complex system; too difficult to analyze

Physical 
modeling



Comparison Black Box

Pros
1. Physical insight and knowledge
2. Modeling a conceived system 

before hardware is built

Cons
1. Often leads to high system order 

with too many parameters
2. Input-output model has a 

complex parameter structure
3. Not convenient for parameter 

tuning
4. Complex system; too difficult to 

analyze

Pros
1. Close to the actual input-output 

behavior
2. Useful for complex systems; too 

difficult to build physical model
3. Quantify noise and uncertainty
4. Convenient structure for 

parameter tuning

Cons
1. No direct connection to physical 

parameters
2. No solid ground to support a 

model structure
3. Not available until an actual 

system has been built

Physical 
modeling

Data-Driven Approach



Ruy (τ ) = E[u(t)y(t +τ )]

= E[u(t)y(t +τ )]+ E[u(t)v(t +τ )]
= E[u(t)y(t +τ )]

LTI
g(k)

k = 0,1,2…u(t) y(t)

v(t) Noise

Cross-Correlation

y(t)
G(eiω ) = (Cross Spectrum)

(Power Spectrum)

Local averaging window

Smoothe
d curve

Wiener-Hopf Equation

Obtaining a Transfer Function from Input-Output Data

Time Domain Frequency Domain

Bode Plot

Impulse Response to White noise

ĝ(t) = 1
λ
Ruy (t), t = 0,1,!,N

Lecture 13



Prediction-Error Method
θ = (a1,!,ana ,b1,!,bnb )

T

θ̂N = argmin
θ

1
N

( y(t)−∑ ŷ(t |θ ))2

G(q) =
b1q

−1 + b2q
−2 +!+ bnbq

−nb

1+ a1q
−1 + a2q

−2 +!+ anaq
−na

Parametric Model

Parameters to identify

Parametric System Identification
Lecture 14

Bode Plot

Non-Parametric

How many data are required?  What would be effective input signals?



Quality of Identification
 

Iteration/Data Number 

ˆ
Nq  

*q  

Distribution of ˆ
Nq  

The variance is 
large for small N. 

The variance is 
small for large N. 

How quickly 
does the variance 
reduce? 

The main points to be obtained in this chapter 
 
The variance analysis of this chapter will reveal 

a) The estimate converges to *q at a rate proportional to 
N
1  

b) Distribution converges to a Gaussian distribution: N(0, Q). 

c) Cov Nq̂  depends on the parameters sensitivity of the predictor: 
q¶
¶ŷ

 

 
Identified model parameter Nq̂  with cov Nq̂  :     a “quality tag” confidence interval 

Asymptotic Distribution of Parameter EstimatesLecture 15

Central Limit Theorem



Input Design
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True Process 

S 

e(t) 

u(t) y(t) 

Model Set 
M 

)(minarg q
q

NV  Consistency 

0~ˆ qqN ? 

Experiment Design 

Data Set 

{ })(),( tytuZ N =  

Sine

Chirp

time

Pseudo-Random Binary Signal 
(PRBS)



12 unimpaired young subjects
Measurements both in seated and standing postures
Two uncorrelated random perturbations (bandwidth of 100Hz) for 40 sec.
Muscle active conditions: Relaxed, TA active, SOL active, and Co-contraction

Target activation level: 10% MVC

Identification of Ankle Impedance: Experiments
Hyunglae Lee

Seated Standing

Professor Neville Hogan’s Lab

Pseudo-Random 
Binary Signal 



Cardiovascular Monitoring

Noninvasive:

peripheral sensors

PPG Ring Sensor

Arterial Tonometer

Deriving ‘central’ information 

from ‘peripheral’ noninvasive measurements

Wearable

Multi-Channel Blind System Identification Zhang and Asada, MIT

Identify the transfer 
function from cardiac 
output to peripheral 
pressure;

Based on the model 
estimate the cardiac output 
from the peripheral 
pressure measurement.
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Cardiac output waveform estimated via LaMBSI
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Cardiac system identification and cardiac output waveform 
estimation using the Laguerre deconvolution algorithm
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Function Approximation and Learning

y

x

Nonlinear function



Function Approximation Theory

y

Varying only in a local area

x

The original 
nonlinear function
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Basis functions

Expand the original nonlinear function to a series of basis functions:

A broad class of nonlinear functions can be approximated to a series of basis functions to 
any accuracy.  e – d proof

Basis functions:
• Radial basis functions
• Wavelets
• Neural nets

Lecture 19



Layer 0

Layer 1
Layer 2

Layer m
Layer M

Hidden Layers
Input
Layer

Output
Layer

Multi-Layer Perception

The Error Back Propagation Algorithm

The Multi-Layer Perception is a universal approximation function that can approximate an 
arbitrary (measurable) function to any accuracy.

How do we train the multi-layer perceptron, 
given training data presented sequentially?
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Neural Network and Learning Algorithm Target output

Estimated 
output

Error
+
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Correcting the 
parameters
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Prediction error formalism

Lecture 20



An alternative method is to execute updating the weight iwD  every time the training data 
is presented. 
 
(8) [ ] ][][ kxkkw ii rd=D     for the k-th presentation 

(9) where ][][][)( kxkwkyk llå-=d  
 
 Correct output for the 

training data presented 
at the -th time 

Predicted output based on the 
weights for the training data 
presented at the -th time 

 

   epoch 1    epoch 2    epoch 3    epoch 4    epoch p 

N presentations 
 

  

 

 W0 

Minimum 

point 

W-space 

W0
Minimum
point



• Many hidden layers :  5~20 layers
• Revised output functions
• Convolutional Neural Net (CNN)
• MaxPooling
• Big Data
• Computing power: GPU

Lecture 21



Correlation



System Identification
And Learning

Frequency Domain

Time Domain

Parametric

Non-Parametric

Nonlinear
(Part 4)

Linear
(Part 3)

Function 
Approximation

Neural Networks

Subspace Methods

Prediction Error
Method

Kernels Support Vector 
Machine

Wavelets

Radial Basis 
Functions

Deep Learning

Gaussian Processes

Exact
Linearization in 

Lifted Space



Lifting

dx
dt

= f (x)

dX
dt

= F ⋅ X

X =

ϕ1(x)
ϕ2(x)
ϕ3(x)
!

⎛

⎝

⎜
⎜
⎜
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⎞
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⎟
⎟
⎟
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⎟

Exact Linearization of 
Nonlinear Dynamical Systems

∞

ℜnKoopman [1931] proved that a general 
nonlinear system can be represented as a 
linear system in an infinite dimensional 
space.

Unlike traditional linearization of nonlinear 
functions, Lifting Linearization is a novel 
method in which a nonlinear dynamical 
system is recast in a higher-dimensional 
space, so that the nonlinear system may 
behave linearly in the augmented, or lifted 
space. 

Lecture 24

The Koopman Operator, however
q Only for autonomous systems with no input;
q Infinite dimensional space

Observables

Complex nonlinearity in 
the original state space

Linear



Lecture 25 Dual-Faceted Linearization

Hydraulic System: An Example

Flow Rate

Pressure

Measure both
Flow rate and pressure

q Applicable to controlled systems;
q Lifting to a finite dimensional (relatively low) space; 
q Physically meaningful augmented state variables.



Time
Horizon

State
Variables

Algebraic linearization:
Taylor Expansion

Lifting Linearization:
Koopman, DFL

Nonlinear
Dynamics

Timet t + T

Application of DFL to Model Predictive Control (MPC) of Nonlinear Systems

q The original system is nonlinear;
q Lifting the system using DFL for 

accurate linearization;
q Apply MPC to the linearized system;
q Convex optimization, fast

computation

P1 = ℓ(x(τ ),u(τ ))dτ
t

t+T

∫ +ϕ(x(t +T ))

!x(t) = f (x(t),u(t)) x0(t) = x(t) C(x(t),u(t)) ≤ 0

, 

MPC
Minimize

Subject to





• Not a fancy subject, like robotics and design subjects.
• But, if you wish to learn something fundamental, 

establish a sold foundation, or apply an analytical 
and/or mathematical methodology to your thesis 
research, you will find 2.160 to be a useful subject.

2.160 seeks deeper understanding, clear insights, 
scientifically sound methodologies, and practically useful 
techniques for modeling, estimation, and learning.
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