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Kalman Filter applied to the Apollo Moon Mission
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Rudolf E. Kalman

Simultaneous 
Localization And 
Mapping (SLAM)

Self-Driving Car

Moon Shot

Kalman Filter applied to the Apollo Moon Mission

Extended Kalman Filter
MIT Draper Lab 1961-1970

Over 50 years later



3

Real
Plant

Model

Gain

Prediction Error Correction Formalism

qEstimating state variables, as opposed to plant parameters: State Observer

qReal-time recursive computation
• Prediction error fed back to state estimation

ut

yt

ŷtx̂t

θ̂ → x̂t

The Luenberger Observer
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Kalman Filter

Real
Plant

Model

Gain
ut

yt

ŷtx̂t

qQuantifying Uncertainty 
• Process noise
• Measurement noise wt vt

Process Noise
Measurement Noise

qState Observer

Kalman Filter

Recursive 
Least

Squares

Bayes
Filter

Quantifying noise 
characteristics and use 
them for better 
estimation.
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Discrete-Time State Observer Formulation
qPlant Model: Linear Time-Varying System

• State (transition) equation

• Output equation (measurement equation)

q Luenberger Observer

• If the system is observable, the estimated state exponentially converges to the true state.

q Kalman filter uses an optimal gain based on statistical properties of noise.

xt+1 = Atxt + Btut
ut ∈ℜ

r×1

yt ∈ℜ
ℓ×1

x̂t →
t→∞

xt

xt

Time

x

estimate

true

where State vector input

Prediction Error: negative feedback

Convergence speed : Pole placement

Recap



6

Kalman Filter v.s. Recursive Least Squares

θ̂t+1 = Iθ̂t + 0ut + Kt ( yt − ŷt )

Treat parameters to estimate as state variables that are constant but unknown. Replacing At
by the identity matrix and setting Bt to 0 yield

There is no fundamental difference between parameter estimation and state estimation.
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Kalman Filter has been extended to many filters.

Kalman Filter

Discrete time

Continuous time

Kalman-Bucy Filter
Riccati Equation
Convergence analysis

Linear plant dynamics

Nonlinear plant dynamics

Extended Kalman Filter
Unscented Kalman Filter

Gaussian noise

Non-Gaussian noise

Bayes Filter
Particle Filter



q First we quantify both measurement noise and process noise with respect to mean and 
correlation/covariance. We assume that noise is wide-sense stationary.

q The mean of noise is assumed zero, and constant.  If the mean is not zero, then we can shift the 
origin of coordinate axes.
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Quantification of UncertaintyFormulation of Discrete Kalman Filter:

Measurement Noise Process Noise

Zero Mean

Uncorrelated (White) Noise

Auto-Correlation

vt wt
t tE[vt ] = 0

E[wt ] = 0

Uncorrelated

Uncorrelated

vt ,i

wt , jE[vt ,ivs,i] = 0
For all t and s, t ≠ s

q We assume Uncorrelated (White) noise.
q Note that each of measurement and process noise is a 

vectorial quantity. Auto-correlation is the correlation 
between two time slices of the same random process 
(the same component of a noise vector). 

E[wt , jws, j ] = 0
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Quantification of Uncertainty:

Measurement or Process Noise

Process 
Noise

Uncorrelated

Cross-Correlation

Uncorrelated

vt
t

wt
t

vt =

vt ,1
!
vt ,ℓ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

wt =

wt ,1
!
wt ,ℓ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

For all t and s, t ≠ s

qWe also characterize noise properties with respect to Cross-Correlation: the correlation 
between two different components of the same noise vector or the one between 
measurement and process noise. 

For all i and j,E[wt ,iws, j ] = 0

Correlation between measurement and 
process noise

E[vt ,iws, j ] = 0
For all t and s,
For all i and j,

Measurem
ent Noise

Uncorrelated
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Quantification of Uncertainty: Covariance Matrices

q In vector and matrix form, auto-correlation and cross-correlation can be collectively expressed as

q When t = s, the diagonal terms represent variance of the individual noise component and 
off-diagonal terms co-variance.

q In summary,
• Measurement noise covariance

E[vtvs
T ] =

Rt ; t = s

0; t ≠ s

⎧
⎨
⎪

⎩⎪
• Covariance Rt is assumed to be positive definite.
• There is no perfect sensor.

• Process noise covariance

• Covariance Qt is assumed to be 
positive semi-definite.

E[vt ,i
2 ] =σ i

2
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Measurement and Process Noise Cross-Correlation

wt

vt E[wtvs
T ] = 0 For all t and s,

qHowever, in some application, process noise also 
influences measurement, as in the case of a self-
driving car.

qFor the sake of simplicity, we assume that there 
is no correlation between them, but this 
assumption can be removed.

qFinally, we assume that these noise terms additively disturb the process. Namely the state 
and measurement equations are given by

qGt represents how the process noise disturb the state variables.

Additive noise

PS#2 Problem 2
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Optimal Filtering Problem
qFind a state estimate,       , that minimizes the mean squared prediction error:

Subject to state and measurement equations

where process noise,        , and measurement noise,         , are uncorrelated 
(White) noise as characterized above.      

qAssuming that the noise distribution is Gaussian, Kalman Filter is the optimal 
among linear and nonlinear filters.

qAssuming that the filter structure is linear,                       , Kalman Filter is the 
optimal linear filter, regardless of noise distribution.

x̂t
Jt = E[| x̂t − xt |

2]

xt+1 = Atxt + Btut +Gtwt
yt = Htxt + vt

x̂t+1 = At x̂t + Btut + Kt[yt − ŷt ]

Kt[yt − ŷt ]

Gaussian

Non-GaussianWe first prove the second problem, and show the proof 
for the first problem at the Bayes Filter lecture.

wt vt

Linear Time Varying System
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The Flow of the Discrete Kalman Filter Algorithm

Time

yt

Observations up to 
and including t - 1

State estimate

Prediction Error

Correct⇓

Propagation

Expected state transition 
based on the state equation, 
e.g. open-loop simulation

Predicted 
output

Update

+
_

Assimilate a new 
observation
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The Flow of the Discrete Kalman Filter Algorithm

Time

yty1 yt−1y2

Observations up to 
and including t - 1

State estimate

x̂t−1 ⇒ x̂t|t−1

⇑
ŷt
⇑

⇓ Prediction Error
yt − ŷt
⇓
x̂t|t−1

⇓
x̂t

Correct⇓

Expected state transition 
based on the state equation, 
e.g. open-loop simulation

Predicted 
output

a priori 
state a posteriori 

state

+
_

Assimilate a new 
observation

Propagation
Update



qUsing the state equation, we want to predict the transition of state:

qThe deterministic term,                  , can be omitted by setting,                  , without 
loss of generality.

qTaking expectation yields

qThis expected value of state,            , is the predicted state at time t based on the 
estimated state at t – 1. This is a priori state estimate denoted by

qUsing the output equation, the expected output is constructed as

qThis is a predicted output to be compared to an actual measured output.
15

Propagation of State

xt = At−1xt−1 + Bt−1ut−1 +Gt−1wt−1

ŷt = E[yt ] = E[Htxt + vt ] = HtE[xt ]+ E[vt ]
∴ ŷt = Ht x̂t|t−1 = Ht At−1x̂t−1

Bt−1ut−1

Zero mean
This is the state estimate at time t - 1

Zero mean

Before measurement of output y(t) is available.
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State Update
q Let be a newly observed output. The predicted output         based on the previous state 

estimate is then compared to the actual measured output and the error is used for 
correcting, or updating, the a priori state estimate: 

qNote that we assume this linear update law in this proof.  Gain is called the 
Kalman gain. Our goal is to find an optimal gain that minimizes the mean squared prediction 
error:

qOptimal gain: .

yt ŷt

x̂t = x̂t|t−1 + Kt[yt − ŷt ]
Kt ∈ℜ

n×ℓ

Jt = E[| x̂t − xt |
2]

(23)

Kt = argminKt
Jt = argminKt

E[| x̂t − xt |
2]
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Effect of Kalman Gain Kt
qPrediction Law:

qNote that there are two types of prediction error.
• a posteriori error:
• a priori error: 

q These two prediction errors are related to each other. Using the state update law (23),

x̂t = x̂t|t−1 + Kt[yt − ŷt ]

et ! x̂t − xt
εt ! x̂t|t−1 − xt

(23)

et = x̂t − xt = x̂t|t−1 + Kt[yt − ŷt ]− xt
= x̂t|t−1 + Kt[Htxt + vt − Ht x̂t|t−1]− xt
= x̂t|t−1 − xt

εt
!"# $#

+ KtHt (xt − x̂t|t−1
−εt

!"# $#
)+ Ktvt

∴ et = (I − KtHt )εt + Ktvt

a priori error      ,
is attenuated by

But, the 
measurement 

noise is amplified 
by         .

Trade-off
qAs the gain Kt becomes higher, the a priori error 

is more reduced but the measurement noise is 
amplified.

qAn optimal gain may exist by making the trade-off between the two. 
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dJt
dK

= 0

Computation of an optimal gain

Jt = E[| x̂t − xt |
2]qComputation of the squared a posteriori error:

qRecall

qOmitting t for brevity,

qNecessary conditions for min

But, is a matrix

dJt
dKij

= 0 For all i and j,
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Matrix differentiation RulesLemma

q Consider a scalar function:

where a∈ℜn×1, b∈ℜℓ×1,K∈ℜn×ℓ

∂ f
∂Kpq

= ap bq
Because all others are zeros, when 
differentiating by . 

i ≠ p, j ≠ q

Note:

q Consider another scalar function:
g = cT KT K b, c∈ℜℓ×1

Similarly, we can show that 

DIY
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Computation of Optimal Gain Kt

qApplying these rules of differentiation by matrix K to the derivative of squared error,

d | e |2

dK
= d
dK

εTε + d
dK
(2εT Kv − 2εT KHε )

+ d
dK
(εT HT KT KHε + vT KT Kv − 2εT HT KT Kv)

= 2εvT − 2εεT HT + KHεεT HT + KHεεT HT + 2KvvT − 2KvεT HT − 2KHεvT

----------------- Rule 1

---- Rule 2

d
dK
(cT KT Kb) = KbcT + KcbT

Rule 1

Rule 2

| e |2= εTε + εT HT KT KHε + vT KT Kv − 2εT KHε − 2εT HT KT Kv + 2εT Kv
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Computation of Optimal Gain Kt

d | e |2

dK
= 2εvT − 2εεT HT + KHεεT HT + KHεεT HT + 2KvvT − 2KvεT HT − 2KHεvT

E[εtvt
T ]− E[εtεt

T ]Ht
T + KtHtE[εtεt

T ]Ht
T + KtE[vtvt

T ]− KtE[vtεt
T ]Ht

T = 0

Rt

q Taking expectation and setting it to zero,

Measurement noise covariance

q Define a priori error covariance: 

Pt|t−1

Pt|t−1 ! E[εtεt
T ]

q Examine E[εtvt
T ]
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E[εtvt
T ]Examine

xt = At−1xt−1 +Gt−1wt−1

E[wtvs
T ] = 0
For all t and s,

Examine From xt-1, only process noise terms 
come out, which do not correlate with the 
measurement noise vt.

Examine
E[x̂t−1vt

T ] = E[( x̂t−1|t−2 + Kt−1( yt−1 − ŷt−1))vt
T ] ← x̂t−1 = x̂t−1|t−2 + Kt−1( yt−1 − ŷt−1)

= E[(At−2 x̂t−2 + Kt−1(Ht−1xt−1 + vt−1 − ŷt−1)vt
T ] ← yt−1 = Ht−1xt−1 + vt−1

= At−2E[x̂t−2vt
T ]+ Kt−1Ht−1E[xt−1vt

T ]+ E[vt−1vt
T ]− E[ ŷt−1vt

T ] = 0
Uncorrelatedvtdoes not correlate with past 

Process noise and measurement noise are not correlated.
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E[εtvt
T ]− E[εtεt

T ]Ht
T + KtHtE[εtεt

T ]Ht
T + KtE[vtvt

T ]− KtE[vtεt
T ]Ht

T = 0
Pt|t−1 Rt

Optimal Gain Kt

q From the above examination:

q Back to the optimality conditions:

qThe optimal gain can be obtained from:

qNote that matrix is positive-definite and invertible:

Positive definite

Positive semi-definite

Kt = Pt|t−1Ht
T (HtPt|t−1Ht

T + Rt )
−1

This is the Kalman Gain

HtPt|t−1Ht
T + Rt
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So, how can we find a priori error covariance ?

Recursive Formula for Obtaining

qa priori error covariance can be computed recursively together with another error covariance.

qDefine a posteriori error covariance:

qRecall that a priori error and a posteriori error are related:

qWith this, the two error covariances are related as:

E[etet
T ] = E[((I − KtHt )εt + Ktvt )((I − KtHt )εt + Ktvt )

T ]

= (I − KtHt )E[εtεt
T ](I − KtHt )

T

+ KtE[vtvt
T ]Kt

T + (I − KtHt )E[εtvt
T ]Kt

T + KtE[vtεt
T ](I − KtHt )

T

∴Pt = (I − KtHt )Pt|t−1(I − KtHt )
T + KtRtKt

T

Pt|t−1 ! E[εtεt
T ]
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Kt = Pt|t−1Ht
T (HtPt|t−1Ht

T + Rt )
−1

Recursive Formula of Covariances, and Pt|t−1
qThe previous expression can be further simplified by using the optimal (Kalman) gain solution.

qThis implies that a priori covariance is reduced by updating the a priori state estimate     
with a newly assimilated measurement,     .  

This is called Covariance Update: .       

q In turn, a priori covariance             can be derived from a posteriori covariance
qRecall:

qCompute:

qWe can show . Therefore,

Pt

Pt+1|t = AtPt At
T +GtQtGt

T

DIY
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Recursive Formula of Covariances, and Pt|t−1 Pt

qThe last formula is called Covariance Propagation : 

Pt+1|t = AtPt At
T +GtQtGt

T

Pt = (I − KtHt )Pt|t−1

Covariance Propagation

Covariance Update
qGiven initial conditions,         ,  covariance matrices can be computed recursively along 

with the Kalman gain 
Kt = Pt|t−1Ht

T (HtPt|t−1Ht
T + Rt )

−1
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Kalman Filter

Recursive 
Computation 
Algorithm

Real-Time
Online Computation

The covariance and Kalman gain computation 
does not depend on measurements.
Therefore it can be computed off-line.

Initial Conditions

Propagate error covariance
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(1) Simulation

(2) State Correction

(1) Simulation: Propagation

(2) State Correction:
Update

0P

3P
2P

1P

3K2K
1K

3|2P
2|1P

1|0P

1T
t tK PH R-=

[ ]Tt t tP E e e=ttt xxe -= ˆ

| 1 | 1 | 1[ ]T
t t t t t tP E e e- - -=| 1 | 1ˆt t t t te x x- -= -

x̂t−1 ! x̂t|t−1

Pt+1|t = AtPt At
T +GtQtGt

T

Pt = (I − KtHt )Pt|t−1


