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Augmenting / Lifting the Input Space

A focal point of Part 4 Machine Learning and
Nonlinear System Modeling: Lifting the input
space

A Linearly separable classification: Not linearly
separable problems, such as XOR, can be
made linearly separable by augmenting the
feature space.

 Hidden units of a neural network can create
such internal variables to augment the
space.

 Kernel methods recast the input space to a
high dimensional space, including an infinite
dimensional space.

1 Gaussian Process exploits covariance
kernels to indirectly deal with high-
dimensional features.
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The final two lectures of 2.160
aim to extend the methodology of input space augmentation to
Linearization of Nonlinear Dynamical Systems through Lifting Dynamics.
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d Introducing a new set of variables:
Z=X,2,=X,,2, = x

L We can rewrite the original state
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equation as:
dz,
— =az,
dt
dz
—2=b(z,-z,)
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A Lucky Example

Q Consider the following 2"9-order
nonlinear dynamical system:

[ The evolution of the third variable z5 is
given by differentiating it.

d dx ? d
% _ —2xi 2x,ax, —2ax =2az,
dt dt b dr

O Therefore, the system is represented as a
linear 3™ order system.
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d Note that no approximation is used. The
lifted system is linear and exact.



3D linear dynamics trajectories
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1 Once linearized, the state equation can be applied to various nonlinear dynamics

analysis and control design problems.

O Consider the above system with control input u.

d

dt

O Let us apply Linear Quadratic Regulator (LQR) that optimizes the following cost

functional.
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A Motivating Example of Lifting Linearization
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0 Solving the above LQR problem, we can find an optimal state feedback law:
( A

2

u(t)=—(k k k)| z, |=—(kx +kx +kx*)
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O Note that this feedback law is a nonlinear feedback since x,? is involved.

O Comparing the above LQR in the lifted space, let us consider a nonlinear optimal
control for the original system.

d Minimize:
_ [ T T . Q11 le _
J = jo (x()7 Q, x(t) +u(t)" Ru(?))d QO—[ o sz] R=1
Subjectto  d d
ubject to i:axl, ﬁ:b(xz—xlz)
dt dt

[ This optimization is difficult to solve; no longer convex optimization; a numerical
solution may be at a local minimum, and the computation is more expensive.



Koopman Operator

O The above case study is a special case of lifting linearization, where simple embedding
of nonlinear terms leads to a complete linear model. General nonlinear dynamical
systems cannot be represented by exact linear equations of finite order.

 However, an arbitrary, autonomous nonlinear dynamical system can be represented by
a linear system of infinite order in a Hilbert space, thanks to Bernard Koopman.

PNAS VoL. 17, 1931 MATHEMATICS: B. 0. KOOPMAN 315

HAMILTONIAN SYSTEMS AND TRANSFORMATIONS IN

o HILBERT SPACE
The Great Depression time

By B. O. KoorpMAN

DEPARTMENT OF MATHEMATICS, CoLUMBIA UNIVERSITY

Communicated March 23, 1931

In recent years the theory of Hilbert space and its linear transformations
has come into prominence.! It has been recognized to an increasing



Koopman Operator

L We start with a discrete-time dynamical system, while the theory applies to a
continuous-time system. Consider a nonlinear autonomous (no input) system:

x. , =F(x) where x eR", F:R"—>R" continuous

O Let g(x):R"—> R be an observable, a scaler-valued function of state, which resembles
output y. Here, g(x) can be a sensor measurement, a nonlinear function of state
variables, such as z; = x,2 in the previous example, or one of the state variables.

[ Collection of all such observables form a linear vector space. Koopman Operator,
denoted by K, is a linear transformation on this vector space.

Kg(x)=go F(x)

» Hereo denotes a composition operation. In this case, the observable function g
applies to F(x), which represents the state of the next time step.
» The Koopman operator is linear. That means, K is a type of matrix, but infinite

dimension.
» The Koopman Operator applies to the collection of observations, a vector of infinite

dimension, that is, a function g(x).



Schematic of Koopman Operator

Time Index t Time Index t +1

State Space
(vector space, manifold)

Observable Space
(function space, Hilbert space

Infinite-dimensional and Linear



A Brute-force Method for
Obtaining a Linear State Equation in a Lifted Space

1 Given a nonlinear state equation, find nonlinear terms in F(x) and replace them by

observables. )
Example: X, =ax, + bxt +csSInmx

gl(xt) gz(xt)

O This allows us to rewrite the state equation as a linear equation with a set of

observables.
x,, =ax +bg (x)+cg,(x)

 Formulate the transition of all the observables, gl(xm),gz (Xm), as linear functions of
observables and state, g,(x,),g,(x,),x, .

g (x,,)=kyx, +k,g(x)+k,g,(x,)
g,(x, ) =kyx, +k,g(x)+k,g,(x,)



A Brute-force Method (continued)

O Including other observables, write a set of augmented state equations, which
represents “point-wise” transitions of state variables and observables.

\ [ \( \
( x (t+1) y o 4y, A T 4y, x, (1)
‘xn (t + 1) an,l o an,n E 'xn (t)
gn+1 (t T 1) an+1,1 K * E gn+1 (t)
t+1 t
& D a a,, |\ &)

S 2

A4

A

= Note that the observables are renumbered so that the matrix is by m.
» To differentiate time step ¢ from the component of the state vector x, time is placed in (7).
= The first n rows of the matrix are known, if all the nonlinear terms of F(x) are replaced by

observables. The bottom (m-n) rows are unknown and to be tuned.



A Brute-force Method (continued)

d Define Z, , collect data for ¢ = 0 through N., and set up 2 data matrices.

( )
x,(2)
. mxXN
) ZO|N 1 (Z Z N—l)eSR
5 x,(7)
¢ — Ve mxXN
2 (1) Zy=(2.2,,.Z, ) eR
| 8o (?) Note that Z,yis one time step ahead of 7, ;.

O The augmented state equation can be arranged for all the data collectively:
Z = A V4

o|N-1

 The least squares solution is given by using the pseudo-inverse of Z;, ;.
A =/ /

N 0N - 1



Limitations to the Brute-force Method

O The above brute-force method is limited in several aspects.
= The selection of observables are ad hoc.
= Koopman’s theory does not say how to pick observables.
= We do not know how many observables are required to better approximate the
nonlinear dynamics.
O To answer these questions, let us better understand the Koopman Operator theory.



Interpretation of Koopman Operator

 Take transpose of the previous expression, and equate it to the following matrix product

Zy=ALZ,,  — 7 =7 A 7 T-K 7

oN-1 “"m N O|N— 1

 Treating state variables, too, as observables, we can write the last expression as:

( ( \( A
g - g - ) k, k, - Kk, g,(0) g(0) -
g(2) - g2 - _ k, k, - k, g (1) g.()

\ g(N) - gﬁ\(N) S kg, ook N g(N=1) -- gi(]\i_l) .

L (F(x)) Ky g(x) !

3 Interestingly, the i column vector represents a trajectory of the it" observable; the left
trajectory{g.(¢) |1 <t < N}, while the one on the right hand side is{g,(7) |[0<t< N -1}

d This implies that the above linear transformation with matrix K, transforms a trajectory
to a trajectory, i.e. transformation of functions. gi(F(X)) _ Kgl.(X)



Revisiting the Schematic of Koopman Operator

O Extending the trajectory of each observable to infinite time steps, and the number of
observables to infinite, matrix K, becomes infinite dimensional. Let us denote the
infinite-dimensional matrix by K, and the observable trajectories as g,(x),&,(x),-

O We can write the Koopman Operator as a linear transformation of a function to a

function. |
g(F(x)=Kg(x), i=L2,-

Observable Space
(function space, Hilbert space)

Observable Space
(function space, Hilbert space)

Infinite-dimensional and Linear



Comparison between Evolution Operator and Koopman Operator

d Evolution Operator leN =A 7
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Koopman Eigenvalues and Eigenfunctions

O The Koopman operator is a linear operator. Therefore, we can characterize it in terms
of eigenvalues and eigenfunctions.

dlet 4, be the /" eigenvalue and @, :R" >R be the corresponding eigenfunction of
Koopman operator K.

Ko, (0)=20,(x), j=12,

U Consider a vector-valued observable g :R" — R?. If each of the p components of g(x)
lies in a function space spanned by the eigenfunctions, we can express g(x) as:

2(¥)=20,(x),

where vector v; is referred to as Koopman modes of the observable g(x) .

 The temporal behaviors of observables can be represented with the Koopman
elgenvalues eigen-functions, and modes.

g(x)= Zcp (x)v, —2(/) (F(x,_))v, —Zqu (X, )V, —ZM (X, )V,

— Z;/ljkq)j(xo)vj
=



Koopman Eigenvalues and Eigenfunctions

[ The temporal behaviors of observables can be represented with
the Koopman eigenvalues, eigen-functions, and modes.

Mode:
__— Representing the observable

g(xk ) — Z{ /’ijgoj (xo ) vj w.r.t. eigen functions
]:

/

Eigen-function:
Bases spanning the function space

» |f one of the eigenvalues is greater than 1, that mode diverges;
= Those modes of |4, |<1 converge; and
* The one on the unit circle evolves on an attractor (limit cycle).
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(b)
The first Koopman mode = time average

(@)

] Snapshot of the
Jet in Cross-Flow flow field

0 Koopman Operator was
first successfully applied
to fluid mechanics.

O Observables are flow

" Time signal
velocities measured at © @ % Time signal
various points in space. 10
Q Data are directly analyzed | - oss|
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C.W. Rowley, et al, “Spectral Analysis of Nonlinear Flows”, Journal of Fluid-mechanics, 2009
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Computation of Koopman Eigenvalues and Modes from Data
4 Back to the Finite-dimensional Matrix K,

O Suppose that we truncate the number of observables at m.

O Collecting data for time 0 through m,

ZT—KZ !

g 1) g,1)
g(2) g,(2)

| g(m) g,(m)

m~— Olm—1

g (1) )
g (2)

g, (m) )

o[ &0
Zyr =\Z20: 2.2, ) R | &
z,.=(2.2,,.2,) e R"™" |20
4 Note that Z,, is one time step ahead of Z;,, ;. Therefore, we can find
(001 0 - 0 ) \
o 1 g,(0)  g,(0) g,,(0)
: Y0 g (1) g,(1) g, (1)
E 0 I : 3 3
K c | &m=D g(m=-1) g,(m=1) |
‘ C

O Note that the Koopman operator is ‘associated with a Companion matrix C,,.

KmHCm



g &0 - g0 Coa T g0 g0 - g0
g &2 - g,@ |_| . 0 g  g® - g,
5 L L 0 1 s s s s
g (m) g,(m) --- g (m) ¢, ¢ ¢ - cC g(m-1) g,(m-1) - g (m—1)

O If there exist a set of coefficients ¢, that satisfy the last row of the above relationship,
the set of observables are complete, forming an Invariant Space.

Ul In general, the last row is an approximation with some residual ..
m—1
gl(m) — chgi(j)_l_ Vs [=1,-,m
j=0
Q The squared residual Y.’ can be minimized by optimizing the coefficients c,.
m m—1
(¢,5+++»c,) =arg min Z[g,-(m)—Zc,.gi(j))2
bom =] Jj=0

O We compute the eigenvalues of the optimized Companion matrix to obtain
approximate Koopman eigenvalues.



Ritz Values and Ritz Vectors

4 Let 4 and w be an eigenvalue and the corresponding eigen vector of the transpose
of the optimized Companion matrix C,,.

CmTw = Aw
d From the previous results,

z, =2, ‘A" adZ '=KZ '=CZ 'wy AZ =7 C"

Ojm—1 m— 0jm—1 m—0m-1 "~ “0m-1"m

O Post-multiply w to the last expression yields
AZ w=Z C'w=AZ w

m~— Olm—1 Om—1 " m Ojm—1

4 This implies that v = 7, , w is an eigenvector of matrix 4,,,.
U Eigenvalue 1 is called a Ritz value and eigenvector v is a Ritz vector.
d Collectively,

C =TT AT where T_l=(w1,---,wm),A=diag.(/ll,---,/lm)
V=, )=Z T

Ojm—1



Modal Decomposition of Nonlinear Systems

U The Ritz values and vectors and related data-driven methods, such as Dynamic
Mode Decomposition (DMD) were developed primarily for linear systems. We now
extend them to nonlinear systems.

O Suppose that we have observed a sequence of observables,

gx(1)eR”, 1=0,12,---,m

4 Let 4"and v;* be the empirical Ritz values and vectors for the data. Then we can
show

gx() =2 (A)v*, 1=0,1,m~1
Jj=1

g(x(m)= Y (A)"v, *+r

O Where r is the residual after optimization, and v;* is scaled by the constant
values ¢(x(0)) in comparison to the previous expression. g(y )= Z/I.kgo.(x )
k JTiN0s

J=1



Reflection

« Koopman Operator is weird, but powerful.

* Nonlinear autonomous systems can be linearized in an infinite
dimensional space.

It acts on functions. It is infinite dimensional.

 Since it is linear, spectral analysis with eigenvalues and
eigenfunctions is applicable to Koopman Operator.

« Data-driven methods are available for obtaining eigenvalues, eigen
vectors, and modes directly from data.

* The exact linearization has been guaranteed only for autonomous
systems (no control inputs) in infinite dimensional spaces.

* Practical methods will be discussed in the final lecture this
Wednesday.



