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No longer Gaussian

Belief g() : the entire pdf distribution rather than a single value.

Bayes Filter predicts the pdf distribution of a random variable.
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Recap

Bayes Filter

State propagation

1. Initial Conditions: g,(x,) set¢=1;
2. Belief Propagation:

X, = f(x,_u_ )+ w,_
Chapman-Kolmogorov Eq. t = -1 | —

g ()= f (= fx ) g (D,

Py(x, [ x,_u,_ )

3. Assimilate Y, and update the a priori belief

Bayes Rule y,=h(x,,t)+v,
/ gt(xt) Modes
gt(xt):T,fV(yt_h(xtat))gt|t_1(xt) |

4. Return g(x,).Settr=t+ 1 and repeat.

Computationally too expensive.

Not feasible for real-time applications.




Particle: Non-Parametric Representation of Probability Density

1 Parametric Distribution

(\\ « Gaussian, Poisson, Gamma, Chi-square
\ f(x) 3 Non-Parametric: Arbitrary Distribution
X
* Histogram
/ « Particles
/ N\ O Draw samples with probability density f, (x)
. x\ and form a data set:
vV _ 1 2 M
N X—{x(),x( ),,,,,x( )}

Q Particle /) (x) may be populated more densely at a region where [, (x) is
large, reflecting the probability density of /. (x) .

1 The samples collectively represent the probability distribution.

N\ Each drawn sample is called a “Particle”



Monte Carlo Approximation

d “Particles” facilitate the computation of expectation.
Example, k-th order moment of random variable X.

E[X"]= J:xkfX(X)dx = iﬁ;(xm)k

2) oo x™M) are particles drawn from Sy (%).

2 b

where x(l) ,x(

4 In general,

1 &
E[ h(x) |2 — > h(x")
i=1



Example: Monte Carlo Approximation

O The distribution of X is represented by histogram and particles.
d Compute the expectation of /(x) from particles.

E[h(x)]= Zh(x ) p(x ) Definition of expectation

= h(x1)§+ h(x2)§+ h(x3)g+ h(x4)%

¥ ¥ 3) x® g particles ( \
1
rzoa =—| h(x D)+ h(P)+ h(xD )+ B D)+ (D)
g8 8 8 8 8 — S
Probability Mass Function \ (%) (x3) J
1 .
=1

The probability is replaced by the multiple particles within the same interval.



How to Generate Particles: )N(
Objective: Generate M particles approximating pdf f,(x)

The Cumulative Distribution Function (cdf) Method 14

1. Construct the cumulative distribution function

Fe)=[" fy(&)dé

2. Draw a sample from a uniform distribution:
0<y <

3. Convert the sample y(i) to x by solving
F(x(i)) _ y(i)

cdf

Steep

Gentle

o

=== == OO R

4. Repeat M times and form a data set . Sparse

5(:{ L@ x<M>}




8.2 Implementing the Bayes Filter Using Particles

Step 1: Propagation

Instead of computing the Chapman-Kolmogorov equation, we generate M
particles representing gtv_l(xt)from g (x,4)

a posteriori belief a priori belief
v — (1) (2) ... (M) =) X = (1) (2) ... M)
X t—1 _{ X1 A X X te—1 xt|t—1 xt|t—1 xt|t—1
- % - %
Recall

/ This resembles Monte Carlo Approximation:

00 1 U ;
But, this is not an algebraic function, but a pdf. E| h(x)]= f_wh(x)fx(x)dXEﬁzh(x( )
i=1



Suppose that many particles exist in

+ Ax

) <
X S

t—1 t—1

e
t
() from (x |x )
ft—1 P 1,72 U1

As many times as the number of particles within

Draw X

the interval of Ax, , .
Then we can approximate  p(x, | X, , j,ut_l) .

Repeating this for all small intervals Ax
we can form the particle distribution.

Pr(x |x _,,u,_,) comes from the process noise pdf

() _
z|;1 JACARY t1)+

Deterministic state /
transition Draw from pdf fy, (v,_,)




In reality, random variable x,_, is a continuous variable. We draw xt(|;)1
for each particle x(’) from f,, .

Pseudo Code

For i=1toM
Draw Wt(i)l from [, (w,_,)
O = D Yt

t|t 1 —1°U
End

Form
% :{ @ x(M)}

tlt-1 tlt—1 tt-1 tlt—1

This approximates & t|t—1(xt ).



Step 2: Update

~S

Assimilate a new observation Y, and update the particles X

flt—1
"z \
X1 "X

{

Bayes’ Rule gt (Xt) — np(yt | xt )gt|t—1 (xt)

\
fV(vt) Yy, =h(x)+v,

Monte Carlo Approximation cannot be used in its original formula.
The key technique for computing this is Importance Sampling.




Consider two pdf’s, f(x) and g(x), where samples can be drawn from g(x) , but

not from f(x).

Assume g(x)>0

How can we generate a particle set to represent f(x) ?

Importance Sampling
fay=L
g(x)

v

W (x) A f(x)

g(x)
Importance Weight

for all x where 1 (x)>0 .

-g(x)

Importance Sampling

f(x)
g(x)

W(x)=

Represent f(x)
as a combination of

Importance Density g(x) X
\and weight W (x) W (x)
Importance Density
s 1
Particles v
X



Applying the Importance Sampling Method to Step 2 Update

2,(x) = 1p(3, 138, (%)

/ T>1is has been represented by particles
Given ), , this term can be .
computed with the X1 ={ xt(|21 xt(vz_)1 xt(hf\f 1) }
measurement noise
model. Samples have been drawn > g(x)

Treat this term as an
importance weight: I/ (x)

~/

How can we generate particles representing g,(x,) from -1 and W(x)?

Use the Cumulative Density Function (cdf)



Consider cdf of f(x)

Foy =" r@ae=["LEo@az=[" werg(&)ds
g(s)
_l_
Define a membership fur)ction: Collect particles up to x.
](f,x):< ltfﬁx 5 %

k 0:E>x —O—WWX%W%@HV

Using this function yields  F(x) = EW(x(l))](x(’) x)
O =1

M
where W, = EW(X(Z))
i=1



The Cumulative Density Function of gt(xt)

G,(x)=[" g (&)d&
L) (i)
= WZ W(xt|t—1’yt)](xt|t—l ’xt)
0 =1
For additive measurement noise,
W(xt(|;)_1;y¢) — fV (yt o h(xt(|;)_1 ))

Recall Y, = i(x,)+v,
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FromG,(x,) we can draw new M particles
to form:

;(:{ NUNNC I x(M)}

[ [




Sequential Importance Sampling (SIS)

Given g,,_,(x,) and ¥, SIS draws x”;i=1---M from &,,_;(X,) and computes
weights W(l) i=1---M, sequentlally
The welghts can be updated recursively as:

o PO p0s” 15

W(l)
t
g 1(x(l) |x(l)

Degeneracy Problem

A well-known problem with the SIS particle filter is the degeneracy
phenomenon.

After a few iterations, all but one particle will have negligibly small weights.
It can be proven that the variance of weights can only increase over time.

[ ™ ad




Re-sampling

Before the variance of weights becomes very large, delete particles with

small weights using a threshold.
‘ Delete
| ‘ ‘ H“H""hlﬂliﬂllum“ X . Mumn ﬂ . X

4

Re-sample
l H X LI X

M particles Uniform weights

17



Cameras and IMU Estimate the 3D position and orientation

using Particle Filter

Dist: 0, Err: 1.0444e-06, Pct: Inf
*

Credit; Professor John Leonard



3D Trajectory
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 Rao-Blackwellized Particle Filter

* Color-tile Particle Filter
e Fast SLAM

* Loop-Closure

LV



