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Estimating Model Parameters from Input-Output Data
q Parametric Model

q Prediction Error Method

θ = (a1,!,ana ,b1,!,bnb )
T

Real System

Model: q

u(t)
y(t)

ŷ(t |θ )

Noise

Prediction 
Error

q Identification Data

q Apply Least Squares Estimate

θ̂N = argmin
θ

1
N

( y(t)−∑ ŷ(t |θ ))2

D ={(u(t), y(t)) | t = 1,2,!,N}

G(q;θ ) =
b1q

−1 + b2q
−2 +!+ bnbq

−nb

1+ a1q
−1 + a2q

−2 +!+ anaq
−na

Theoretical Questions
q Consistent Estimate

θ̂N →
N→∞

θ0

Does the Least Squares Estimate        approaches 
the true parameter values as the number of data 
tends to infinity?

(true)

θ̂N

This is the same property as “Unbiased Estimate” 
under the ergodicity assumption.

E[θ̂N ] = θ0
This requires 1) correct model structure, 2) correct 
prediction, and 3) persistently exciting data.

q Convergence Speed: How quickly does        
converge? 
§ How many data points are required?
§ What are major factors influencing 

the convergence speed?

θ̂N
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Analysis of Asymptotic Distribution of Estimated Parameters

N

θ̂10 θ̂100 θ̂1000

q The major results of the analysis:

1. Convergence rate θ̂N →θ *
At a rate proportional to

1
N

2. Error distribution

Converges to a Gaussian distribution

3. Covariance Q = E[(θ̂N −θ*)(θ̂N −θ*)T ]

Depends on
• Noise intensity
• Sensitivity of predictor 

to parameter

∂ ŷ(t |θ )
∂θ

Larger is better.

4. Confidence Interval
Quality of parametric system identification

Confidence Interval
θ̂N −θ *

θ *
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Approach: Central Limit Theorem in Statistics
q We aim to analyze the distribution of estimated parameters by 

applying the Central Limit Theorem (CLT).
q CLT tells us that the mean of samples of size N drawn from a 

population with an arbitrary distribution tends towards a normal 
distribution, as the sample size tends to infinity.

µ

Population with arbitrary distribution

x
Pick N samples

x(1) ,x(2) ,!,x(N )

0

Compute Sample Mean

µsample =
1
N
((x(1) − µ)+ (x(2) − µ)+!+ (x(N ) − µ))

µsample

N=large

N=small

q Let be multivariate random variables with 
mean

q The covariance is given by

q Consider the sum of 

Xt ∈ℜ
ℓ , t = 1,2,",

E[Xt ] = m

CX = E[(Xt −m)(Xt −m)
T ]

for all t.

for all t.

Xt −m

YN = 1
N

(Xt −m
t=1

N

∑ ) = N 1
N

(Xt −m
t=1

N

∑ ) = N × (Sample Mean)

q As N tends to infinity, the distribution of YN converges to a 
Gaussian distribution

Y = lim
N→∞

1
N

(Xt −m
t=1

N

∑ ) ~ !(0,CX )

q We will apply this theorem to find the distribution of parameter estimate        for a large N.θ̂N
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1
A(q)

B(q)
u(t) y(t)

e(t)ARX

Auto-Regressive model with eXogenous input

Assumptions

1. The predicted output is given as a linear regression:

ŷ(t |θ ) = θTϕ(t) - This condition will be relaxed later.

2. The assumed model structure is correct.

y(t) = θ0
Tϕ(t)+ e0(t)

where

E[e0(t)e0(s)] =
λ; t = s
0; t ≠ s

⎧
⎨
⎪

⎩⎪

is the true parameter values, andθ0

white

Actual data are generated by the correct model with the true parameter values.

3. Ergodicity
E[Xt ] = limN→∞

1
N

Xt
t=1

N

∑ (ensemble mean) = (time average)

4. Persistent excitation



6

Asymptotic Distribution Analysis
q Under the assumptions described above, input-output data are collected and the Least Square Estimate of 

parameters is computed. 
q Where is the distribution of the parameter estimate converging, as we collect a large number of data, ? 

We aim to analyze the distribution of estimated parameters using CLT.
N ≫1

Step 1 If        is the solution to the least squares estimate for a 
given data set of size N, it minimizes the squared error: 

θ̂N

dVN (θ )
dθ θ=θ̂N

= 0 For a finite N, however,

dVN (θ )
dθ θ=θ0

≠ 0VN

θ̂N θ0 θ

dVN (θ )
dθ θ0

≠ 0

VN = 1
N

( y(t)−∑ ŷ(t |θ ))2



7

Asymptotic Distribution Analysis

Mean Value 
Theorem

Recall the Mean Value Theorem

Let f(x) be a continuous, differentiable function in 
[a,b]. There exists at least one point at         , where
f (b)− f (a)
b− a

= f '(c), a < c < b

x = c

or f (b)− f (a) = f '(c)(b− a) f (b)

f (a)

f '(c)
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Asymptotic Distribution Analysis
q Under the assumptions described above, input-output data are collected and the Least Square Estimate 

of parameters is computed. As we collect a large number of data,          , where is the distribution of the 
parameter estimate converging? We aim to analyze the distribution of estimated parameters using CLT.

N ≫1

Step 1 If        is the solution to the least squares estimate for a 
given data set of size N, it minimizes the squared error: 

θ̂N dVN (θ )
dθ θ=θ̂N

= 0

For a finite N, however,
dVN (θ )
dθ θ=θ0

≠ 0

a b

f(x)

Mean Value 
Theorem

VN

θ̂N θ0 θ

θ

dVN (θ )
dθ

Recall the Mean Value Theorem

Let f(x) be a continuous, differentiable function in 
[a,b]. There exists at least one point at         , where

f (b)− f (a)
b− a

= f '(c), a < c < b

x = c

or f (b)− f (a) = f '(c)(b− a) Applying this to dVN (θ )
dθ

θ̂N θ0

a b

dVN (θ )
dθ θ=θ0

−
dVN (θ )
dθ θ=θ̂N

=
d 2VN (θ )
dθ 2

ξ

(θ0 − θ̂N )
∴(θ̂N −θ0 ) = −

d 2VN (θ )
dθ 2

ξ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1

dVN (θ )
dθ θ=θ00

ξc

c

dVN (θ )
dθ θ0

≠ 0

(A)
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q Compute 
dVN (θ )
dθ θ0

dVN (θ )
dθ θ0

= d
dθ

1
2N

( y(t)−∑ ŷ(t |θ ))2
θ0

= − 1
N

( y(t)−∑ ŷ(t |θ )) d
dθ
ŷ(t |θ ) θ0 ← ŷ(t |θ ) = θTϕ(t)

= − 1
N

( y(t)−∑ θTϕ(t))ϕ(t) θ0 ← y(t) = θ0
Tϕ(t)+ e0(t)

∴
dVN (θ )
dθ θ0

= − 1
N

e0(t)
t=1

N

∑ ϕ(t) (B)

q Treat                  as Xt in CLT:e0(t)ϕ(t)

YN = 1
N

(Xt −m
t=1

N

∑ )

e0(t)ϕ(t)

Step 1. Continued
∴(θ̂N −θ0 ) = −

d 2VN (θ )
dθ 2

ξ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1

dVN (θ )
dθ θ=θ0

From the previous page
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Step 2 Evaluate the mean and covariance of random variable Xt = e0(t)ϕ(t)

E[Xt ] = E[e0(t)ϕ(t)] = 0, ∀t

Recall ϕ(t) = − y(t −1),!,− y(t − na ),u(t −1),!,u(t − nb)( )T ⇔ e0(t) Uncorrelated

q Mean

q Covariance CX (t,s) = E[(Xt −m)(Xs −m)
T ] = E[ϕ(t)e0(t)ϕ

T (s)e0(s)]

§ If t = s CX (t,t) = E[ϕ(t)ϕ
T (t)e0(t)e0(t)]

= E[ϕ(t)ϕT (t)]⋅E[(e0(t))
2 ] = R ⋅λ

R ! E[ϕ(t)ϕT (t)]Define λ ! E[(e0(t))
2 ]and

§ If t > s e0(t)⇔ϕ(t)ϕT (s)e0(s) Uncorrelated, independent

CX (t,s) = E[e0(t)]E[ϕ(t)ϕ
T (s)e0(s)] = 0

§ Similarly, if t < s CX (t,s) = 0

CX (t,s) =
R ⋅λ; t = s
0; t ≠ s

⎧
⎨
⎪

⎩⎪

q Both mean and covariance of                            are uniform over time t.

q Therefore, we can apply CLT to the summation:

Xt = e0(t)ϕ(t)
YN = 1

N
(ϕ(t)e0(t)

t=1

N

∑ )

(B’)
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Step 3 From Step 1, the parameter estimation error is given by (θ̂N −θ0 ) = −
d 2VN (θ )
dθ 2

ξ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1

dVN (θ )
dθ θ=θ0

(A)

q We compute the second derivative matrix:

d 2VN (θ )
dθ 2

θ=ξ

= d
dθ
dVN (θ )
dθ θ=ξ

= − d
dθ
1
N

( y(t)−θTϕ(t))
t=1

N

∑ ϕ(t)
θ=ξ

= 1
N

ϕ(t)
t=1

N

∑ ϕT (t)
θ=ξ

→
N→∞

R

Note that the ergodicity assumption was used in the last line. E[ϕϕT ] = lim
N→∞

1
N

ϕ(t)ϕT (t)
t=1

N

∑

(C)

q Putting together (A), (B), and (C)

From (A) N (θ̂N −θ0 ) = −
d 2VN (θ )
dθ 2

ξ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1

N
dVN (θ )
dθ θ=θ0

= R−1 1
N

ϕ(t)e0(t)
t=1

N

∑

(C) (B)
Applying CLT, this term converges to Gaussian

YN = 1
N

(ϕ(t)e0(t)
t=1

N

∑ ) →
N→∞

~ !(0,CX )
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Step 3 Continued

N (θ̂N −θ0 ) = R
−1YN , YN ~ !(0,Rλ) From (B’) CX = Rλ

q The covariance of YN is       , but what we want to know is the 
covariance of            . 

q We apply the following transformation rule:

§ Suppose y = Ax and 
§ Then,

§ Replacing

§ Covariance of           is 

CX = E[xxT ]

CY = E[yyT ] = E[AxxT AT ] = AE[xxT ]AT = ACX A
T

x↔ YN , CX ↔ Rλ, A↔ R−1, y↔ R−1YN

Q = R−1RλR−1 = λR−1R−1YN

Note     is symmetric.R
q In summary, the distribution of parameter estimate converges to 

a Gaussian distribution with variance

∴ N (θ̂N −θ0 ) ~ !(0,λR
−1)

Rλ
R−1YN

θ̂N −θ0

N (θ̂N −θ0 )0

Q = λR−1

0

Large N

Small N

q The error                 decreases at a rate of        . θ̂N −θ0
1
N
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Analysis of Asymptotic Distribution of Estimated Parameters

N

θ̂10 θ̂100 θ̂1000

θ *

∴ N (θ̂N −θ0 ) ~ !(0,λR
−1)

q The error                 decreases at a rate of        . θ̂N −θ0
1
N

Question?

A UROP student took data (N = 10) to identify a 
system; the result had some significant standard 
deviation. You want to reduce it to 1/10 of the
original result.
How many data does the UROP have to take?
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Discussion

1
A(q)

B(q)
u(t) y(t)

e(t)

θ̂N −θ00

Large N

Small N

Real System

Model: q

u(t)
y(t)

ŷ(t |θ )

Covariance                 depends on Q = λR−1

q Noise strength:

q Input (regressor) signal strength:

q Recall  

λ = E[(e(t))2]

R = E[ϕ(t)ϕT (t)]

ϕ(t) = [− y(t −1),!,u(t −1),!]T

q The higher the sensitivity, the faster the convergence. If 
an unnecessary parameter is involved in the model, it 
may have a low sensitivity, which slows down 
convergence.

This implies that the regressor pertains to the sensitivity of 
the predicted output to parameters

ŷ(t |θ ) = θTϕ(t)

ϕ(t)⇒ dŷ(t |θ )
dθ

Therefore,
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Example
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Parameter a

Parameter b

Signal-to-Noise Ratio
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Input Design
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= 1
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Multi-Sinewave

Another choice for input design is 
Sinusoidal signal.

Combining multiple frequencies,
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Chirp Signal

Time

ω1

ω2

T

This is one of the most 
frequently used technique.


