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18. Subspace Methods for System identification

Real System
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Model

Prediction Error Method (PEM)

θ̂N = argmin
θ

1
N

( y(t)−∑ ŷ(t |θ ))2

q Parameters q are not linearly involved in the 
predictor               except for ARX and FIR models.

q Local Minima: Non-convex optimization, Repetitive 
computation; Extended LSE

q Remedy: Instrumental Variables for unbiased 
(consistent) estimate

ŷ(t |θ )

Subsystem Methods
q In state space representation of LTI systems, 

parameter matrices, A, B, C, and D, are linearly 
involved in state equation and measurement 
equation. In discrete time,

x(t +1) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)

q This can be re-arranged to:

q Replacing all the parameter matrices by Q, and left 
hand side by Y(t) and the combination of x(t) and 
u(t) by j(t), we can find that the above equation 
can be solved as a standard LSE problem.
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Gopinath’s Formulation

q B. Gopinath at Bell Laboratories (1969) is the first to formulate the basic algorithm of Subspace methods.
q Consider a multivariate LTI system

x(t +1) = Ax(t)+ Bu(t)+η(t)
y(t) = Cx(t)+ Du(t)+υ(t)

where x ∈ℜn×1,u∈ℜm×1, y ∈ℜ p×1

and A, B, C, and D, are constant parameter matrices (system matrices) with consistent dimensions.
,   h (t) and n (t) are residues,

q Rearranging the above equations,
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q The parameter matrices are separated from other variables in this expression; a linear 
regression. The least squares estimate of the parameters is given by
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q The LSE solution is unique, if the regressor covariance is full rank. That is,

rank
x(0) x(1) ! x(N −1)
u(0) u(1) ! u(N −1)

⎛
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q Residuals h and u are zero-mean, and their covariance can be obtained by

Q S

ST R
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q If we treat unmodeled dynamics, uncertainties, and some nonlinear effects as noise, the 
above covariance provides the statistic properties of the noise.

q This is the basic formula of subspace methods found in B. Gopinath’s work in 1969 at the 
Bell Laboratories.

q The key question, however, is how we can obtain states x(t), x(t+1),… from input and output 
data. This question is directly related to a System Realization problem.
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Realization of LTI Systems 

q Let us obtain a state space representation (state and measurement equations) from a given transfer 
matrix (function). This is called a system realization problem. There are multiple sets of state and 
measurement equations that produce the same transfer function, i.e. the same input-output behavior. 

x(t +1) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)G(q)

Straightforward

Realization

q The particular state space representation we want to realize is the one that uses the lowest dimension of 
state variables, called Minimal Realization.

q Minimal realization is unique up to a non-singular transformation among the sets of state variables.
q The following are a quick review or a summary of background information required for studying system 

realization.

u(t) y(t)
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Quick Review / Summary of Background Linear System Theory

x(t +1) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)

q The following are a quick review or a summary of background information required for studying system 
realization.

a. Impulse Response v.s. State Equation

From the state equation above,

y(t) = Cx(t)+ Du(t) = C(Ax(t −1)+ Bu(t −1))+ Du(t)
= CAx(t −1)+CBu(t −1)+ Du(t)

= CA2x(t − 2)+CABu(t − 2)+CBu(t −1)+ Du(t)

!= CAtx(0)+ Du(t)+ CAi−1Bu(
i=1

t

∑ t − i)

u(t) = 0 ; t ≠ 0
Impulse Response:

For the impulse input,

x(0) = 0

Let                                     be impulse 
response coefficient matrices

y(t) =
Du(0) : t = 0

CAt−1Bu(0) : t > 0

⎧
⎨
⎪

⎩⎪

{G(0),G(1),G(2),!}

y(t) = G(k)u(t − k)
k=0

∞

∑
y(t) = G(t)u(0)

(1)

(2)

Comparing (1) and (2), we find

G(t) =
D : t = 0

CAt−1B : t = 1,2,!

⎧
⎨
⎪

⎩⎪

The output to the impulse input
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b. Observability

q Reconstruct the initial state x(0) from output sequence , assuming no input for all t;y(0), y(1),!, y(k −1)
u(t) = 0,∀ty(0) = Cx(0)

y(1) = Cx(1) = CAx(0)
!

y(k −1) = CAk−1x(0)

y(0)
y(1)
!
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⎛
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! "# $#

x(0)or If p = 1, k = n, and                
is non-singular,

On ∈ℜ
n×n

x(0) =On
−1
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!
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⎟

is uniquely determined.

q The initial state x(0) is determined uniquely, if 
is of full column rank.

Ok

q In the system identification context, the system order n is often unknown. 
Therefore, we set k to be strictly larger than n.

q We call matrix         Extended Observability Matrix.Ok
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c. Reachability and Controllability

q Consider a discrete-time LTI system of order n. If the initial state x(0) = 0 can be transferred to any 
state at time n by means of a sequence of input, , then the system is called 
Reachable.

u(0),u(1),!,u(n−1)

x(n) = Anx(0)+ An−1Bu(0)+ An−2Bu(1)+!+ Bu(n−1)

= Anx(0)+ B AB ! An−1B⎛
⎝

⎞
⎠

C∈ℜn×nm
! "#### $####

u(n−1)
u(n− 2)
%
u(0)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

q If matrix A is non-singular, then a reachable system is also controllable.

q In the system identification, we often do not know the system order. We use Extended Reachability Matrix.

C ⋅

u(n−1)
u(n− 2)
!
u(0)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

can span the entire 
n-dimensional 
space, if     is of full 
column rank.

CC

Origin
Arbitrary 

State
Controllability

Reachability

q If matrix       is of full column rank,  then a sequence of input 
exists that brings the state to an arbitrary state in n steps.

Ck ∈ℜ
k×km , k > n
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18.2 Ho-Kalman’s Method for System Realization

q Ho-Kalman’s method is a foundation of Subspace methods, where state and measurement equations 
are  obtained from impulse response coefficient matrices.

q Consider a LTI system that is both observable and reachable, that is, the matrix triple (A,B,C) is minimal.
q We first construct a block Hankel matrix using given impulse response coefficient matrices:

H =

G1 G2 ! Gk
G2 G3 Gk+1
" # "
Gk Gk+1 ! G2k−1#

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

CB CAB ! CAk−1B
CAB CA2B CAkB
" # "

CAk−1B CAkB ! CA2k−2B

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
∈ℜkp×km

q Interestingly, this Hankel matrix can be decomposed to the extended observability matrix and the 
extended reachability matrix.

where

H =

C
CA
!

CAk−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

B AB " Ak−1B⎛
⎝

⎞
⎠ = OkCk

k > n

G(t) =
D : t = 0

CAt−1B : t = 1,2,!

⎧
⎨
⎪

⎩⎪

Recall
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q Take the Singular Value Decomposition of the Hankel matrix H:

H =UΣV T = U1 U2( ) Σ1 0

0 0

⎛

⎝
⎜
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⎠
⎟
V1
T

V2
T

⎛

⎝
⎜
⎜

⎞
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⎟
⎟
=U1Σ1V1

T

where
Σ1 =

λ1 0

!
0 λn
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⎟
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λ1 ≥ λ2 ≥!≥ λn > 0

q Note that the rank of the extended observability matrix and that of the reachability matrix are n.
q Obtain the positive square root matrix of      :

Σ1
1/2 =

λ1 0

!

0 λn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Σ1
1/2Σ1

1/2 = Σ1

Σ1

In fact

q Construct the observability and reachability matrices as follows: 

Ok =U1Σ1
1/2 Ck = Σ1

1/2V1
Tand
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Ok =U1Σ1
1/2 Ck = Σ1

1/2V1
Tand

q The product of these matrices recovers the Hankel matrix H.

OkCk =U1Σ1
1/2Σ1

1/2V1
T =U1Σ1V1

T = H

q Also, Ok =U1Σ1
1/2T Ck = T

−1Σ1
1/2V1

Tand , too, recovers the Hankel matrix, where T is a non-singular matrix.

q From the above observability and reachability matrices, minimal system matrices (A,B,C) can be 
determined.

§ From Ok =U1Σ1
1/2

Ok =

C
CA
!

CAk−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒C = Ok (1: p,:)∈ℜ
p×n

§ From Ck = Σ1
1/2V1

T

Ck = B AB ! Ak−1B⎛
⎝

⎞
⎠ ⇒ B = Ck (:,1:m)∈ℜ

n×m
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C
CA
!

CAk−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

A =

CA
CA2

!

CAk

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= Ok+1( p +1: p(k +1),:)

O 'k+1
! "### $###

∈ℜ pk×n

q To determine the A matrix, we examine the extended observability matrix; Post-multiplying A, 
we have

∴Ok A = O 'k+1
q Solving this for A: Pre-multiplying           (.                ) 

Ok
TOk A = Ok

TO 'k+1

Ok
T

n x n, Non-singular

q Therefore, the minimal system parameters (A,B,C,D) are directly obtained from the Singular Value 
Decomposition (SVD) of the Hankel matrix H consisting of impulse response coefficients G(k).

A = (Ok
TOk )

−1Ok
TO 'k+1

Pseudoinverse Ok
#

Ok ∈ℜ
kp×n
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18.3 Data Matrices

q Ho-Kalman’s method allows us to determine system parameters in state space, (A,B,C,D), from  
impulse response coefficients.

q However, our objective in system identification is to obtain (A,B,C,D) from input-output data.

G(t),t = 0,1,2,!{(u(t), y(t)) | t = 0,1,2,!} (A,B,C,D)
Input-Output Data Impulse Response State and Measurement Equations

Ho-Kalman

Subspace  ID MOESP, N4SID
q In Subspace methods, we place data in block Hankel matrix form. 

§ Input Data Matrix

U0|k−1 =

u(0) u(1) ! u(N −1)
u(1) u(2) u(N )
" # "

u(k −1) u(k) ! u(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

§ Output Data Matrix

Y0|k−1 =

y(0) y(1) ! y(N −1)
y(1) y(2) y(N )
" # "

y(k −1) y(k) ! y(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟mk × N pk × N
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Example 18-1.   Suppose that y(t) = 0, t < 0. Apply an impulse input 
at t = 3, and observe the response of a LTI system with 3 steps of delay.

u = (0,0,0,1,0,0,!), y = (0,0,0,g0,g1,g2,g3,!)
Let k = 4, and N = 8. We form input and output data matrices, and append them. 

U0|3
Y0|3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 g0 g1 g2 g3 g4
0 0 g0 g1 g2 g3 g4 g5
0 g0 g1 g2 g3 g4 g5 g6
g0 g1 g2 g3 g4 g5 g6 g7

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

This block is the 
Hankel matrix H4,4

Zero input
U0|k−1 =

u(0) u(1) ! u(N −1)
u(1) u(2) u(N )
" # "

u(k −1) u(k) ! u(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Y0|k−1 =

y(0) y(1) ! y(N −1)
y(1) y(2) y(N )
" # "

y(k −1) y(k) ! y(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

q The Hankel matrix is factorized to observability and reachability matrices                , from which a 
minimum system (A,B,C) can be obtained.

q The above input-output data have a special structure: Zero-input response. General input-output 
data do not have this structure. However, as shown in the following, they can be transformed to the 
zero-input structure from which system parameter matrices can be determined.

H = OkCk

Time

y(t)

u(t)

u(0)
Zero-input response
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Collective Input-Output Hankel Expression
q From state and measurement equations,

y(t) = Cx(t)+ Du(t)
y(t +1) = CAx(t)+CBu(t)+ Du(t +1)

y(t + 2) = CA2x(t)+CABu(t)+CBu(t +1)+ Du(t + 2)
! !

q These equations can be written collectively, 

y(t)
y(t +1)
!

y(t + k −1)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

yk (t)
! "## $##

=

C
CA
%

CAk−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ok
! "# $#

x(t)+

D 0 % 0
CB D &
& ' 0

CAk−2B % CB D

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ψk

! "##### $#####

u(t)
u(t +1)
&

u(t + k −1)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

uk (t)
! "## $##

pk ×1 pk × n pk ×mk mk ×1
q Or, succinctly,

yk (t) = Ok x(t)+Ψkuk (t)
This matrix is a block 
Toeplitz matrix.
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Collective Input-Output Hankel Expression
q Note that concatenating                                            yields the block Hankel output matrix,

q The input-output relationship,                                            ,  can be expanded to the block Hankel form,

q This is a succinct expression of the following relationship. 

Y0|k−1 = yk (0) yk (1) ! yk (N −1)( )
yk (0) yk (1) ! yk (N −1)

Similarly, U0|k−1 = uk (0) uk (1) ! uk (N −1)( )
X0 ! x(0) x(1) " x(N −1)( )Also, we define

yk (t) = Ok x(t)+Ψkuk (t)
Y0|k−1 = Ok X0 +ΨkU0|k−1

y(0) y(1) ! y(N −1)
y(1) y(2) y(N )
" # "

y(k −1) y(k) ! y(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Y0|k−1
$ %&&&&&&& '&&&&&&&

=

C
CA
"

CAk−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ok
! "# $#

x(0) x(1) % x(N −1)( )
X0

! "##### $#####
+

D 0 % 0
CB D &
& ' 0

CAk−2B % CB D

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ψk

! "##### $#####

u(0) u(1) % u(N −1)
u(1) u(2) u(N )
& ' &

u(k −1) u(k) % u(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

U0|k−1
! "####### $#######
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Assumptions on Data

y(0) y(1) ! y(N −1)
y(1) y(2) y(N )
" # "

y(k −1) y(k) ! y(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Y0|k−1
$ %&&&&&&& '&&&&&&&

= Ok x(0) x(1) ! x(N −1)( )
X0

! "##### $#####
+Ψk

u(0) u(1) % u(N −1)
u(1) u(2) u(N )
& ' &

u(k −1) u(k) % u(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

U0|k−1
! "####### $#######

q For constructing subspace identification algorithms, we have to make three key assumptions on data. 

q Assumption A-1: rank X0 = n. x1

xn

x2

q Assumption A-2:

mk × Npk × N

rankU0|k−1 = mk
Recall ϕ(t)ϕT (t) = (full rank)∑

ϕ(0) ! ϕ(N −1)( )
ϕT (0)
!

ϕT (N −1)

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

u(0) ! u(N −1)( )q Assumption A-3: rank
U0|k−1
X0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= mk + n

X0 and U0|k-1 are not collinear. No linear state feedback: u = Kx.

In other words, the spaces spanned by the input matrix and the state matrix do not intersect.

span X0 ∩ span U0|k−1 ={φ} Experiments should not be taken with linear state feedback, u = Kx.

The state vector is sufficiently excited, or the system is reachable.

The input sequence is persistently exciting of order k.
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q Under these assumptions, an arbitrary input-output data matrix below can be transformed to a type of 
the zero-input response form, from which system parameter matrices are determined.

W0|k−1 =
U0|k−1
Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

L11 0

L21 L22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

q We need to prove a few Lemmas.

Lemma 18-1.  
Suppose that the 3 assumptions are met and rank      = n for the following data matrix. Then, the rank of 
the matrix is:

rank
U0|k−1
Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= km+ n

Proof Y0|k−1 = Ok X0 +ΨkU0|k−1Rearranging
U0|k−1
Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

Ikm 0km×n
Ψk Ok

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

U0|k−1
X0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Transformation to Zero-Input Response

Zero-input response

Ok

rank: km + n

Identity Matrix
rank: km

rank: n

rank: km + nrank: km + n

q This Lemma implies that, if we delete row vectors in 
Y0|k-1 that are dependent on the row vectors in U0|k-1 , 
there remain exactly n independent row vectors in       .Y0|k−1
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Transformation to Zero-Input Response (Continued)
Lemma 18-2

Any input-output pair of length k that satisfies,                                             , can be expressed as a 

linear combination of the column vectors of data matrix W0|k-1 , which satisfies the 3 assumptions. 

That is, there exists a vector                  such that

yk (0) = Ok x(0)+Ψkuk (0)

ζ ∈ℜN×1

uk (0)

yk (0)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

U0|k−1

Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ζ , note: W0|k−1 =

U0|k−1

Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Proof For an arbitrary input-output pair uk(0) and yk(0), there exists an initial state x(0) that satisfies the 
equation:

By assumption,       , thereforerank
U0|k−1
X0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= km+ n

Similar to Lemma 18-1,

uk (0)

x(0)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

U0|k−1
X0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ζ

yk (0) = Ok x(0)+Ψkuk (0)

uk (0)

yk (0)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

Ikm 0km×n
Ψk Ok

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

uk (0)

x(0)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

Ikm 0km×n
Ψk Ok

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

U0|k−1
X0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ζ =

U0|k−1
Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ζ

Q.E.D.
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LQ Decomposition
q From the previous Lemmas, a Zero-Input Response can be created by a linear combination of the column 

vectors of data matrix W0|k-1 .

∃ζ ∈ℜN×1, s.t.
U0|k−1
Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

W0 | k −1

! "# $#

ζ =

0
!
0
"y(0)
!

"y(k −1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

q Repeating this to create sufficient Zero-Input Response vectors, we can form a Hankel matrix from which the 
system matrices (A,B,C) can be obtained, as demonstrated in Example 18-1.

q However, this transformation of data matrix W0|k-1 to the Zero-Input Response form can be achieved by LQ 
Decomposition.

U0|k−1
Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ζ1 ! ζ (m+ p)k⎛

⎝⎜
⎞

⎠⎟

Q
! "#### $####

=
L11 0

L21 L22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,

q LQ decomposition transforms the data matrix W0|k-1 to a Lower Triangular Matrix, which is the form 
of Zero Input Response
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QR Decomposition
q LQ Decomposition is the transpose of so-called “QR Decomposition”. An arbitrary rectangular matrix 

can be decomposed to an orthonormal matrix Q and an upper triangular matrix in the following form:

q Matrix Q consists of unit-length column vectors that are orthogonal to each other.

q MATLAB  code: qr(A),   (Q, R) = qr(A) returns an orthonormal matrix Q and an upper triangular matrix of 
the above form.

q There are effective algorithms to obtain the QR factorization of a rectangular matrix.
q Gram-Schmidt procedure – numerically not stable
q Householder Reflection – widely used method

A = QR = Q1 Q2( ) R1
0

⎛

⎝
⎜

⎞

⎠
⎟

A∈ℜm×n

m ≥ n R1 =

* * ! *
0 * * "
" 0 * *
0 ! 0 *

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∈ℜn×n

QTQ =
Q1
T

Q2
T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
Q1 Q2( ) = Q1

TQ1 Q1
TQ2

Q2
TQ1 Q2

TQ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

In 0

0 Im−n

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= Im

n m-n
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LQ Decomposition of Data Matrix W0|k-1

q We apply the transpose of the QR decomposition form to the data matrix W0|k-1 .

q The two well-known Subspace Algorithms can be derived from this LQ Decomposition.

§ MOESP (Multivariable Output Error State sPace)
§ N4SID (Numerical algorithm for Subspace State Space System Identification) --- read “Enforce It!”

U0|k−1
Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

L11 0

L21 L22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Q1
T

Q2
T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,A = QR→ AT = RTQT


