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The Final Stretch of 2.160

q11/18: Deep Learning: CNN and RNN

q11/30:Support Vector Machines and Kernel 
Methods

q12/2: Gaussian Processes
12/4: Final study group meeting

q12/7: Koopman Operator Theory for Exact 
Linearization of Nonlinear Dynamical Systems

q12/9: Dual Faceted Linearization with 
Application to Model Predictive Control

COP-4 due

PS#6 Due

Problem 1

Problem 2

Problem 3

Problem 4

PS#6 

Too early
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What is it?Where is he/she 
going?

Where is it 
going?

Action
Plan A

Pedestrian Car

Obstacle

Action
Plan C

Action
Plan B

Regression Regression

Classification



Feature 1x

2x
Feature 

Class 1

Class 2
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(Human)

(Others)



Feature 1x

2x
Feature 

Human: Class 1 

Others:
Class 21 2ax bx c+ >

1 2ax bx c+ £

Find a, b, and c that best separate classes 1 and 2.
5



1x

2x
Class 1

Class 2
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1x

2x
Class 1

Class 2

Distance of 
separation

Find             and b that best 
separate classes 1 and 2.

1 2,w w

1 1 2 2 0w x w x b+ + =
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Support Vectors



Outline
Support Vector Machines and Kernel Methods

– SVM maximizes the margin in two-class 
classification 

–Mathematical derivation of the optimal 
classifier with the largest margin

– Linear separability: revisite XOR
– Augmentation of feature space with kernels
– Kernel trick
– Positive-definite, symmetric kernels
– Reproducing kernel Hilbert space
– Radial-basis functions

1x

2x
Class 1

Class 2
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Find                  and b that maximizes the margin            
for separating classes 1 and 2.

1, , nw w!

1( , , , )nJ w w b!

1min ( , , , )nJ w w b!
Subject to the correct classification:
All the data points in class 1 ;
All the data points in class 2 ;

1( , , , )nJ w w b!

1 1 2 2 0n nw x w x w x b+ + + + >!
1 1 2 2 0n nw x w x w x b+ + + + £!

max

1x

2x
Class 1

Class 2

Margin

A limited number of 
points  on the borders are 
called Support Vectors.

9



f (x) > 0→ y = +1 f (x) ≤ 0→ y = −1

f (x) = wT x + b
w∈ℜn×1 b∈ℜ

D = (xi , yi ) | i = 1,!,N{ }
yi(w

T xi + b) ≥1, i = 1,!,N

SVM Theoretical Derivation
Discriminant Function

These two can be combines and replaced by 

Correct classification:                                   

q We care only the sign of the 
discriminant function.

q We can scale the function so that it 
takes the value of 1 at a support 
vector on positive side, and -1 at a 
support vector on the negative side.x1

x2

f (x) > 0→ y = +1

f (x) ≤ 0→ y = −1

f (x1) = −1

f (x2 ) = +1

This applies to all the sample points.

x ∈ℜn

10

(Classification function)



f (x) = wT x + b w∈ℜn×1 b∈ℜ

SVM Theoretical Derivation
Discriminant Function

x1

x2

f (x1) = −1

f (x2 ) = +1

ℓ

n

The width of the separation, or the Margin of 
Classifier, is given by using a unit vector n:

Width = 2
w

x1 wT x1 + b = −1
x2 wT x2 + b = 1

Since       satisfies                           
and         satisfies 

Width

Width = nT (x2 − x1)

11

2 = wT (x2 − x1)
Dividing both sides by |w| yields:

2
|w |

= w
T

|w |
(x2 − x1) = n

T (x2 − x1) =Width

Unit vector n = w
w



Width = 2
w

min
w,b

1
2
wTw

yi(w
T xi + b) ≥1, i = 1,!,N

SVM Theoretical Derivation

Maximizing this is equivalent to minimizing its reciprocal:

Subject to 

x1

x2

f (x) > 0→ y = +1

f (x) ≤ 0→ y = −1

f (x1) = −1

f (x2 ) = +1

Maximize

Width = 2
w

Maximize 2
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q To eliminate any discriminant function that is unable to correctly classify all the
sample points, consider the following penalty function:

max
0≤α i≤M

α i 1− yi(w
T xi + b)⎡⎣ ⎤⎦ M ≫1

q Therefore, the above penalty function becomes 0 if all the sample points are correctly
classified, and it takes a large value only when some sample points are incorrectly
classified.

L(w,b,α1!α N ) =
1
2
wTw+ max

0≤α i≤M
α i 1− yi(w

T xi + b)( )
i=1

N

∑
q Consider the minimization of the following functional

q Note that any discriminant function that cannot correctly classify some sample points
is eliminated in the minimization of the functional.

x1

x2

f (x) > 0→ y = +1

f (x) ≤ 0→ y = −1

f (x1) = −1

f (x2 ) = +1
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L(w,b,α1!α N ) =
1
2
wTw+ max

0≤α i≤M
α i 1− yi(w

T xi + b)( )
i=1

N

∑Minimizing:

min
w,b,α1!αN

L = min
w,b

1
2
wTw+ max

0≤α i≤M
α i 1− yi(w

T xi + b)( )
i=1

N

∑⎡

⎣
⎢

⎤

⎦
⎥

= max
0≤α i≤M

min
w,b

1
2
wTw+ α i 1− yi(w

T xi + b)( )
i=1

N

∑⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

∂L*
∂w

= 0 : w = α i yixi
i=1

N

∑ ∂L*
∂b

= 0 : α i yi
i=1

N

∑ = 0

min L = max
0≤α1!αN ≤M

1
2

α j y jx j
T

j=1

N

∑
⎛

⎝⎜
⎞

⎠⎟
α k yk xk

k=1

N

∑⎛⎝⎜
⎞
⎠⎟
+ α i 1− yi α j y jx j

T

j=1

N

∑
⎛

⎝⎜
⎞

⎠⎟
xi + b

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

N

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

min L = max
0≤α1!αN ≤M

α i −
1
2

α iα j yi y jx j
T xi

j=1

N

∑
i=1

N

∑
i=1

N

∑⎡
⎣
⎢

⎤

⎦
⎥α i yi

i=1

N

∑ = 0

Swapping min and max yields,

L*The necessary conditions for L* to be min.

Therefore,

Substituting                         yields
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min L = max
0≤α1!αN ≤M

α i −
1
2

α iα j yi y jx j
T xi

j=1

N

∑
i=1

N

∑
i=1

N

∑⎡
⎣
⎢

⎤

⎦
⎥ α i yi

i=1

N

∑ = 0Subject to

This cost function is quadratic in terms of α iq , and the constraint is a linear 
equation. 

q Therefore, this is a Quadratic Programming problem for which effective 
solution methods exist.

f (x) = α i yi(xi
T x

i=1

N

∑ )+ bf (x) = wT x + b

∂L*
∂w

= 0 : w = α i yixi
i=1

N

∑q Substituting the optimal weights                       into the discriminant function:
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q Since support vectors lie on the marginal hyperplanes, for any support vector xi,  
and thus b can be obtained as:wT xi + b = yi

b = yi − α j y j
j=1

N

∑ (x j
T xi )



Linearly separable.

1x

2x

Not linearly separable.
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Input Output

0 0 0

0 1 1

1 0 1

1 1 0

X1 X2 y

The Exclusive OR Problem

X1
X2

y
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Class 0 

Class 1 

 

 
 

 

1 No matter how you pick a, b, 
and b, these points cannot be 
separated into the two classes.

How to make it separable?

Add other variables.

Input Output
0 0 0
0 1 1
1 0 1
1 1 0
X1 X2 y

The Exclusive OR Problem

1 2,w w

1 2 1 1 2 2( , )f x x w x w x b= + +

Discriminant function:
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Class 0 

Class 1 

3
12),( 212121 --+== xxxxxxfz

3
12 321 --+= xxxz

This is apparently a 
linear function: 
Linearly Separable.

Consider a third variable:

replace 1x 2x by a new variable 3x  

3 1 2x x x!
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The algorithm of Support Vector Machine can be extended to the 
transformed feature space.

x =
x1
x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ϕ(x) =
x1
x2
x1x2

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

How can we find such a new variable in a systematic manner? 20



Discriminant function:

where

Training Data:

Classification:

f (ϕ(x)) = wTϕ(x)+ b

ϕ(x)∈ℜm×1, w ∈ℜm×1

f (ϕ(x)) > 0→ y = +1
f (ϕ(x)) < 0→ y = −1

yi ⋅ f (ϕ(xi )) ≥1

D ={(ϕ(xi ), yi ) | i = 1,!,N}

Width = 2
w f (x1) = −1 f (x2 ) = +1

ϕ(x1)

ϕ(x2 )

n = w
w

Width = 
w
w
(ϕ(x2 )−ϕ(x1))

min
w,b

1
2
wTw

max

yi ⋅ f (ϕ(xi )) ≥1Subject to

T

21



If the data in the feature space are linearly separable, then the 
optimal discriminant function that maximizes the separation 
margin is given by

where ai are the variables that maximizes the following 
quadratic function:

Subject to

This is the same simple quadratic optimization problem.

α i yi
i=1

N

∑ = 0

w = α i yiϕ(xi )
i=1

N

∑

min L = max
0≤α1!αN ≤M

α i −
1
2

α iα j yi y jϕ(x j )
Tϕ(xi )

j=1

N

∑
i=1

N

∑
i=1

N

∑⎡
⎣
⎢

⎤

⎦
⎥
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q Using the optimal weights,                             , the optimal discriminant function, or the 

Support Vector Classifier, is given by 

q is a scalar quantity, called a kernel function:  

q It is the inner product of two feature vectors in a high dimensional space          . 
q This can be computed without obtaining the high-dimensional feature vector.
q In the quadratic optimization, too, the high dimensional feature vector          shows up as 

an inner product.  Therefore, we deal with only its kernel

w = α i yiϕ(xi )
i=1

N

∑

min L = max
0≤α1!αN ≤M

α i −
1
2

α iα j yi y jϕ(x j )
Tϕ(xi )

j=1

N

∑
i=1

N

∑
i=1

N

∑⎡
⎣
⎢

⎤

⎦
⎥

f (ϕ(x)) = wTϕ(x)+ b = α i yiϕ(xi )
i=1

N

∑⎡
⎣
⎢

⎤

⎦
⎥

T

ϕ(x)+ b = α i yi
i=1

N

∑ [(ϕ(xi ))
Tϕ(x)]

k(xi ,x)
! "## $##

+ b

ϕ(x)

ϕ(x)

23

k(xi ,x) = (ϕ(xi ))
Tϕ(x)

k : X × X !ℜ, x ∈X ,xi ∈X

k(xi ,x j ) = (ϕ(xi ))
Tϕ(x j )

Fast C
omputation



Polynomial Kernels
x =

x1
x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

q Suppose that the original feature space is two-dimensional: 

q Consider the following kernel function: a function of the inner product of vector x and x’

K (x,x') = (xT x'+c)2 = x1
2x '1

2+ x2
2x '2

2+ c2 + 2x1x '1 x2x '2+ 2cx1x '1+ 2cx2x '2

K (x,x') = (xT x'+c)2
q This can be extended to

24

= x1
2 x2

2 2x1x2 2cx1 2cx2 c⎛
⎝⎜

⎞
⎠⎟

x '1
2

x '2
2

2x '1 x '2
2cx '1
2cx '2
c

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= (ϕ(x))Tϕ(x ')



Polynomial Kernels (Continued)

x =
x1
x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

q This implies that the feature vector 
space has been expanded from 
the original 2-dimensional space to 
a new 6-dimensional space:

ϕ(x) =

x1
2

x2
2

2x1x2
2cx1
2cx2
c

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

K (x,x') = (xT x'+c)2 = x1
2 x2

2 2x1x2 2cx1 2cx2 c⎛
⎝⎜

⎞
⎠⎟

x '1
2

x '2
2

2x '1 x '2
2cx '1
2cx '2
c

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= (ϕ(x))Tϕ(x ')
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Polynomial Kernels (Continued)

x =
x1
x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

This implies that the feature vector 
space has been expanded from 
the original 2-dimensional space to 
a new 6-dimensional space:

ϕ(x) =

x1
2

x2
2

2x1x2
2cx1
2cx2
c

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟q The discriminant function (Support Vector Classifier) becomes:

f (ϕ(x)) = wTϕ(x)+ b = α i yi
i=1

N

∑ [(ϕ(xi ))
Tϕ(x)]

K (xi ,x)
! "## $##

+ b = α i yi
i=1

N

∑ (xi
T x + c)2 + b

q Note: the function can be evaluated directly using the low-dimensional input vectors without 
actually transforming the data to the higher dimensional space.

This is called the Kernel Trick.
q The Kernel Trick allows us to 

§ Significantly reduce the computational load, and 
§ Find the way of reducing a not-linearly separable problem to a linearly separable problem 

in a higher-dimensional space without actually transforming it to the new space. 26



Kernel Functions 

27

q In supervised learning, quantifying similarity between two data points is critically 
important. A kernel function quantifies this similarity or nearness of data, encoding 
features in its functional structure.  

q There are numerous kernel functions being used for machine learning:
§ Dot-product (polynomial) kernel

§ Radial-Basis Function (Squared exponential kernel, Gaussian kernel)

§ Sigmoid kernel

q Questions:
§ How are these kernel functions related to high-dimensional feature spaces?
§ Does a nonlinear feature function exists, which generates a kernel 

function in the form of inner product between and         ?
§ Under which conditions does it exist?

k(x,x ') = (x ⋅ x '+1) p

k(x,x ') = exp − | x − x ' |
2

2ℓ2
⎛
⎝⎜

⎞
⎠⎟

k(x,x ') = tanh(κ x ⋅ x '−δ )

ϕ(x)
ϕ(x) ϕ(x ')
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Positive-Definite Symmetric Kernels
q Let us examine this special property of kernel functions.
q Definition of Kernel Matrix

§ Given a set of vectors,                                           and a kernel over X:

§ The following m-by-m matrix can be formed, which is called a Kernel Matrix.
k : X × X !ℜ

x1,x2 ,!,xm ∈X ⊂ℜn

K =

k(x1,x1) ! k(x1,xm )
! " !

k(xm ,x1) ! k(xm ,xm )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
∈ℜm×m :  a Gram matrix

q Definition of Positive-Definite Symmetric Kernel
§ A kernel over X,                            , is said to be positive-definite and symmetric,

if for an arbitrary sample                             from X, the associated Kernel Matrix 
is positive semi-definite and symmetric.

k : X × X !ℜ
{x1,x2 ,!,xm}

cT Kc ≥ 0, ∀c∈ℜm
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Theorem: Existence of Feature Map j (x)
- Reproducing Kernel Hilbert Space (RKHS) -

qLet                          be a positive-definite and symmetric kernel. Then,
there exists a Hilbert space H and a mapping such that

k : X × X !ℜ

k : X × X !ℜ

k(x,x ') = <ϕ(x),ϕ(x ') > ∀x ∈X ,∀x '∈X

ϕ : X ! H

§ Hilbert Space: Don’t get scared by this math term. In 2.160, we mean by Hilbert 
space an infinite dimensional vector space where inner product is defined, and
any Cauchy sequence converges within its own space: completeness.

§ A function f (x) can be treated as an infinite dimensional vector. Therefore, a
function may be an element in a Hilbert space.

qFor a positive-definite, symmetric kernel                        , the associated Hilbert 
space H has the following property, called the reproducing property:

h(x) = < h,k(x, ⋅) >, ∀h∈H ,∀x ∈X
§ Note that h is a function and an element in H. The inner product is an integral:

< h,k(x, ⋅) > = h(z)k(
X∫ x,z)dz
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Example: Radial-Basis Function / Gaussian Kernel / Squared Exponential Kernel 

k(x,x ') = exp − | x − x ' |
2

2ℓ2
⎛
⎝⎜

⎞
⎠⎟

→ k(x,x ') = <ϕ(x),ϕ(x ') >

exp − | x − x ' |
2

2ℓ2
⎛
⎝⎜

⎞
⎠⎟
= exp − | x |

2

2ℓ2
− | x ' |

2

2ℓ2
+ x

T x '
ℓ2

⎛
⎝⎜

⎞
⎠⎟
= exp − | x |

2

2ℓ2
⎛
⎝⎜

⎞
⎠⎟
exp − | x ' |

2

2ℓ2
⎛
⎝⎜

⎞
⎠⎟
exp

xT x '
ℓ2

⎛
⎝⎜

⎞
⎠⎟

exp
xT x '
ℓ2

⎛
⎝⎜

⎞
⎠⎟
= 1+ x

T x '
ℓ2

+ 1
2!
(xT x ')2

ℓ4
+ 1
3!
(xT x ')3

ℓ6
+"

In case x is a scalar x,

ϕ(x) = exp − x
2

ℓ2
⎛
⎝⎜

⎞
⎠⎟
⋅

1
x / ℓ

x2 / 2ℓ2

x3 / 6ℓ3

"

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

We can confirm:

exp − x
2

ℓ2
⎛
⎝⎜

⎞
⎠⎟
⋅

1
x / ℓ

x2 / 2ℓ2

x3 / 6ℓ3

"

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

T

exp − x '
2

ℓ2
⎛
⎝⎜

⎞
⎠⎟
⋅

1
x '/ ℓ

x '2 / 2ℓ2

x '3 / 6ℓ3

"

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= k(x,x ')

The associated feature space is infinite dimensional. 

Taylor series Expansion
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f (ϕ(x)) = α i yi
i=1

N

∑ [(ϕ(xi ))
Tϕ(x)]+ b→ F(x) ! α i yik(xi ,x)

i=1

N

∑ + b

Radial-Basis Function / Gaussian Kernel / Squared Exponential Kernel 

qRadial-Basis Function is the most widely used kernel 
function in machine learning, particularly for SVM and 
Gaussian Processes (Lecture 23).

k(x,x ') = exp − | x − x ' |
2

2ℓ2
⎛
⎝⎜

⎞
⎠⎟

q Like other kernel functions, a Radial-Basis Function represents the similarity or nearness of  
two data points, x and x’, with characteristic length scale l.

qFor SVM, kernel functions are directly used in Support Vector Classifier:

α1,!,α N = arg max
0≤α1!αN ≤M

α i −
1
2

α iα j yi y jk(x j ,xi )
j=1

N

∑
i=1

N

∑
i=1

N

∑⎡
⎣
⎢

⎤

⎦
⎥

qParameters are determined by solving the following quadratic optimization problem.

ℓ

= small

= large

x’

ℓ

x x

1

Characteristic Length Scale



Reflection
Support Vector Machine and Kernel Methods

– SVM maximizes the margin in two-class 
classification 

–Mathematical derivation of the optimal 
classifier with the largest margin

– Linear separability: revisited XOR
– Augmentation of feature space with kernels
– Kernel trick
– Positive-definite, symmetric kernels
– Reproducing kernel Hilbert space
– Radial-basis functions

1x

2x
Class 1

Class 2
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