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Estimation for deterministic systems

• Signals are corrupted with noise, 
which is random, but we ignored 
it;

• We did not quantify noise 
characteristics.

A dynamical system is perturbed by noise.

Plant
Input

Process Noise

Measurement Noise

Observed Output+
+

A random process

Quantification of Uncertainty (QU)

• Use stochastic properties (statistics) of the 
process for better estimating the parameters 
and the state of the process;

• Better understand, analyze, and evaluate 
estimation methods.

Quantifying Uncertainty
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Quick Review of Probability and Random Variables

More rigorous studies:
• Set theory
• s – field
• Lebesgue Measure
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1). Random Variable
Random variable is a function 
that maps a random event to a 
numerical value.

Event

Random event: w Number
X

6+6 = 12

2   3   4   5   6   7   8   9  10  11  12

X = xi
Random Variable

Capital
Instantiation
Lower Case

x

Probability Mass Function

PX (xi ) = Pr(X = xi )

3.1 Probability and Random Variable

1/36

1/6
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2). Cumulative Distribution Function (CDF)

FX (x) = Pr (X ≤ x)

CDF

PDF

Note that for continuous X,Pr (X = x) = 0

2-A). Probability Density Function (PDF)

fX (x) =
dFX (x)
dx

FX (x) = fX (z)dz−∞

x
∫
fX (z)dz−∞

∞
∫ = 1 fX (x) ≥ 0

x

x

FX

fX

1

0

0
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3). Joint Probability

Discrete

Continuous

pXY (xi , y j ) = Pr (X = xi &Y = y j )

fXY (x, y)ΔxΔy = Pr (x ≤ X ≤ x + Δx & y ≤ Y ≤ y + Δy)

simultaneously

4). Independent Random Variables

fXY (x, y) = fX (x) fY ( y), ∀x,∀y For all x and y.

5). Conditional Probability Density

fX |Y (x | y) =
fXY (x, y)
fY ( y)

If X and Y are independent,

fXY (x, y)
fY ( y)

=
fX (x) fY ( y)
fY ( y)

= fX (x)

Does not depend on Y.Conditional probability of X, given Y 
(under the probability Y)
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6). Bayes Rule

fY |X ( y | x) =
fXY (x, y)
fX (x)

fXY (x, y) = fY |X ( y | x) fX (x) = fX |Y (x | y) fY ( y)

∴ fX |Y (x | y) =
fY |X ( y | x) fX (x)

fY ( y)

7). Marginal Probability

fX (x) = fXY (x, y)dy−∞

∞
∫

fY ( y) = fXY (x, y)dx−∞

∞
∫ x

y

fXY (x, y)

fY ( y) = fXY (x, y)dx−∞

∞
∫
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8). Expectation

Expected value of X ,  Synonym: mean, average 

E[X ] = x fX (x)dx−∞

∞
∫ Discrete: E[X ] = xi pi

i
∑

9). Variance
var[X ] = E[(X − E[X ])2] = E[X 2 − 2X ⋅E[X ]+ (E[X ])2]

= E[X 2]− 2E[X ]⋅E[X ]+ (E[X ])2

∴var[X ] = E[X 2]− (E[X ])2

10). Moment
k-th moment E[X k ] = xk fX (x)dx−∞

∞
∫ k = 1, 2, 3, ….
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11). Normal (Gaussian) Distribution

x

Random variable X has a normal distribution with 
mean         and variance

mX

fX (x) =
1

2πσ
exp − 1

2σ 2
(x −mX )

2⎡

⎣
⎢

⎤

⎦
⎥

X ~ N (mX ,σ
2 )

mX
σ

σ 2

σ 2 = (x −mX )
2 fX (x)dx−∞

∞
∫

PDF

Mean and variance completely characterize the distribution.
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E[XY ] = x y fXY (x, y)dx dy−∞

∞
∫−∞

∞
∫

12). Correlation
The expectation of the product of two random variables, X and Y, is called “Correlation”.

Joint probability density
If X and Y are independent,

E[XY ] = x fX (x)dx y fY ( y)dy−∞

∞
∫−∞

∞
∫ = E[X ]E[Y ]

Note:
Although Correlation is zero, the two random variables are not 

necessarily independent.

13). Orthogonality

If correlation is zero, ,  X and Y are said to be “Orthogonal”.   E[XY ] = 0
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14). Covariance

cov[X ,Y ] = E[(X − E[X ])(Y − E[Y ])]

15). Correlation Coefficient

ρXY = cov[X ,Y ]
var[X ] var[Y ]

= E[
X −mX
σ X

Y −mY
σY

]

−1≤ ρXY ≤1
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3.2 Random Processes
A random process is a family (ensemble) of time 
functions having a probability measure.

Consider a set of identical oscilloscopes measuring 
Ground Noise.
Each oscilloscope shows a particular noise waveform 
coming from the same source of random process, that is 
to say, each waveform is an instantiation.
Collecting voltage values displayed in all the 
oscilloscopes, we can construct a probability distribution, 
as shown right. 
At each time the output of an oscilloscope is therefore a 
random variable,          . 
The random variables,                                    are collectively
called a Random Process. 

Oscilloscope 1

Oscilloscope 2

Instantiation 1

Instantiation 2

Quantification of a random process:

• First-Order Density fX (t ) (x)

X (t)

A random variable

time

time

t

tX (t), − ∞ < t < ∞
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Random Process

Let us quantify how two random variables at two different 
times of a random process are correlated to each other.

Let           and             be two random variables at time t1 and t2.

Let                            be the joint probability of the two random 
variables.
The correlation between the two is given by

Second-Order Densities

Auto-Correlation

Quantification of a random process with correlation

time

This is called Auto-Correlation, since it is from the same random process.

X (t1) X (t2 )

fX1X2 (x1,x2 )

RXX (t1,t2 ) = E[X (t1)X (t2 )]

= x1x2 fX1X2 (x1,x2 )dx1dx2−∞

∞
∫∫

X (t1) X (t2 )

t1 t2

Correlation
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time

X (t1) X (t2 )

t1 t2

Correlation

Wide-Sense Stationary Process
A random process is called a Wide-Sense Stationary 
Process, if the following two conditions are met:

• The mean value does not depend on time; the 
mean is uniform and constant throughout the 
process;

• The Auto-Correlation depends only on the time 
interval,                  , rather than the specific times 

Note that the auto-correlation of a wide-sense stationary process is an even function.

Auto-Covariance:

E[X (t)] = mX ; ∀t

τ = t2 − t1

RXX (t1,t2 ) = RXX (τ ) = E[X (t +τ )X (t)]; ∀t

RXX (−τ ) = RXX (τ )

CXX (t1,t2 ) = E[(X (t1)−mX (t1))(X (t2 )−mX (t2 ))]
= RXX (t1,t2 )−mX (t1)mX (t2 )

τ = t2 − t1
mX
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Independent and Identically Distributed (i.i.d. IID, iid) Random Variables and Processes

q Consider two random variables X and Y, with probability densities             and           .
q Random variables X and Y are called Independent and Identically Distributed (i.i.d.) if the following two 

conditions are met:

fX (x) fY ( y)

fX (x) = fY (x), ∀x

fXY (x, y) = fX (x) fY ( y), ∀x,∀y
q i.i.d. is a convenient assumption widely used in statistics. Often it reflects samples taken from the same 

source.
q This concept can be easily extended to more than two random variables and random processes.

IndependentIndependentIndependent

Note the difference 
between independence 
and orthogonality.

i.i.d. random process
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3.4 Adaptive Noise Cancellation: An Application

Before concluding this chapter, we apply the theory of 
random variables and random processes to a practical 
problem.

Active noise cancellation is a technique to measure the 
background acoustic noise and subtract it from the main 
signal so that the latter is not corrupted with the 
background noise.

It has been applied to live music recording, aviation 
communication devices, and your music headset.

Two microphones are used; Microphone 1 for the main 
signal, and Microphone 2 for background noise.

Main

Main

Background

Background
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Microphone 1

Microphone 2

Interference
Dynamics

Adaptive
Filter

Active Noise Cancellation 

True Signal

Noise

w(t)

y(t)
x(t)

v(t)

ŵ(t)

z(t)+

+

+
_

• The background noise v(t) propagates through an unknown dynamic process and arrives at 
Microphone 1, where  the true signal x(t) is mixed with the interfering noise w(t).

• The background noise picked up with Microphone 2 is fed to Adaptive Filter, where the 
interfering noise is recovered.

• The predicted interfering noise          is subtracted from the output of Microphone 1, y(t),  
to recover the true signal.

ŵ(t)

y(t) = x(t)+ w(t) z(t) = y(t)− ŵ(t)
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Microphone 1

Microphone 2

Interference
Dynamics

Adaptive
Filter

True Signal

Noise

w(t)

y(t)
x(t)

v(t)

ŵ(t)

z(t)+

+

+
_

Active Noise Cancellation 

We assume a Finite Impulse Model for the Interfering Dynamics.

w(t) = b1v(t −1)+ b2v(t − 2)+!+ bmv(t −m)

Parameters to estimate: θ =

b1
!
bm

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

ϕ(t) =
v(t −1)
!

v(t −m)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Regressor:

w(t) = θTϕ(t)

A linear regression

Assumption: True signal x(t) and background noise v(t) are uncorrelated random processes, 

E[x(t)v(t −τ )] = 0, ∀t,∀τ
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Active Noise Cancellation 
Problem: Estimate parameter vector q in real-time, 
so that the noise may be most suppressed.
Solution: Consider the recovered output z(t), 
which depends on the parameter values :

Examine

z(t |θ̂ ) = y(t)− ŵ(t |θ̂ )
The mean squared signal strength of 

E[(z(t |θ̂ ))2] = E[( y(t)− ŵ(t |θ̂ ))2] = E[(x(t)+ w(t)− ŵ(t |θ̂ ))2]

= E[(x(t))2]+ 2E[x(t){w(t)− ŵ(t |θ̂ )}]+ E[(w(t)− ŵ(t |θ̂ ))2]

E[x(t)w(t)] = E[x(t){b1v(t −1)+!+ bmv(t −m)}]
= b1E[x(t)v(t −1)]+!+ bmE[x(t)v(t −m)] = 0

since the true signal and background noise are uncorrelated:

Similarly, 

E[x(t)v(t −τ )] = 0, ∀t,∀τ

E[x(t)ŵ(t)] = E[x(t){b̂1v(t −1)+!+ b̂mv(t −m)}]

= b̂1E[x(t)v(t −1)]+!+ b̂mE[x(t)v(t −m)] = 0

z(t |θ̂ )

Microphone 1

Microphone 2

Interference
Dynamics

Adaptive
Filter

True Signal

Noise

w(t)

y(t)
x(t)

v(t)

ŵ(t)

z(t)+

+

+
_

z(t |θ̂ ) = y(t)− ŵ(t |θ̂ )

q



Active Noise Cancellation 

E[(z(t |θ̂ ))2] = E[(x(t))2]+ 2E[x(t)w(t)]− 2E[x(t)ŵ(t |θ̂ )]+ E[(w(t)− ŵ(t |θ̂ ))2]

E[x(t)w(t)] = 0 E[x(t)ŵ(t)] = 0This term does not depend 
on parameter q.

We want to minimize this squared error in 
predicting the interfering noise.θ o = argmin

θ̂
E[(w(t)− ŵ(t |θ̂ ))2]

This can be treated as 
a prediction error.

Microphone 1

Microphone 2

Interference
Dynamics

Adaptive
Filter

True Signal

Noise

w(t)

y(t)
x(t)

v(t)

ŵ(t)

z(t)+

+

+
_

y(t) = x(t)+ w(t) z(t) = y(t)− ŵ(t)
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Active Noise Cancellation 

E[(z(t |θ̂ ))2] = E[(x(t))2]+ 2E[x(t)w(t)]− 2E[x(t)ŵ(t |θ̂ )]+ E[(w(t)− ŵ(t |θ̂ ))2]

E[x(t)w(t)] = 0 E[x(t)ŵ(t)] = 0This term does not depend 
on parameter q.

We want to minimize this squared error in 
predicting the interfering noise.

θ o = argmin
θ̂
E[(w(t)− ŵ(t |θ̂ ))2]

= argmin{E[(x(t))2]+ E[(w(t)− ŵ(t |θ̂ ))2]}

= argmin
θ̂
E[(z(t |θ̂ ))2]

This can be treated as 
a prediction error.

Equivalent to minimize this, which is computable.

Treating as a prediction error and replacing it by , we can apply 
the Recursive Least Squares algorithm to estimate the parameters involved in the interfering 
dynamics (FIR model) in real-time. Using forgetting factor a, 

w(t)− ŵ(t |θ̂ )

θ̂(t) = θ̂(t −1)+
Pt−1ϕ(t)

α +ϕT (t)Pt−1ϕ(t)
[ y(t)− ŷ(t |θ̂(t −1))] Pt =

1
α
Pt−1 −

Pt−1ϕ(t)ϕ
T (t)Pt−1

α +ϕT (t)Pt−1ϕ(t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

z(t |θ̂ )

z(t |θ̂ )
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Microphone 1

Microphone 2

Interference
Dynamics

Active Noise Cancellation using RLS and Orthogonality 

True Signal

Noise

w(t)

y(t)
x(t)

v(t)

ŵ(t)

z(t)+

+

+
_

Recursive
Least Squares

Adaptive
Filter

Discussion:
1. What if the true signal x(t) is picked up by Microphone 2, too?
2. Does        correlate with x(t)? If so, it cannot be factored out.

Answer:
b̂i

You should discuss it in your study group.
Context-Oriented Project #1 is on a related topic.


