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Example 1. Finite Impulse Response (FIR) Model

Example 2. Nonlinear function
Parameters are linearly 
involved, if we use the 
following regressor:

Recap



Least Squares Estimate (LSE)
For finding parameters from data,         and ϕ(t)y(t)

Real
System

Model
q

Prediction – Error Formalism

Prediction Error

y(t)

ŷ(t |θ )

ŷ(t |θ )− y(t)ϕ(t)

Mean Squared Error:

VN (θ ) =
1
N

( ŷ(t |θ )− y(t)
t=1

N

∑ )2

Least Squares Estimate (LSE) provides the parameter 
vector that minimizes the above Mean Squared Error:

θ̂ LS = argmin
θ
VN (θ )

Recap

New Data
@ t

Updated LSE model

Problem:
Given a set of data

ϕ (1) , y(1)

ϕ (2) , y(2)

!

ϕ (N ) , y(N )

Find parameter vector q



θ̂ LS (t) = θ̂ LS (t −1)+ Kt[ y(t)− ŷ(t |θ̂ LS (t −1))]

Kt =
Pt−1ϕ(t)

1+ϕT (t)Pt−1ϕ(t)

Pt = Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

The Recursive Least Squares Algorithm

where t = 1,2,!

Initial conditions:

θ̂ LS (0) = θ̂0 =

P0 =

θ̂0 = 0

P0 = I

Arbitrary,        e.g.

Positive Definite Matrix, e.g. Identity Matrix

Carl Friedrich Gauss discovered the Recursive Least 
Squares Algorithm in 1821.

4

New Data
@ t

Updated LSE model

Previous model
θ̂ LS (t −1)

θ̂ LS (t)

Recap
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2.3 Physical Meaning of Matrix P

θ̂ LS (t) = θ̂ LS (t −1)+ Kt[ y(t)− ŷ(t |θ̂ LS (t −1))]

(1+ϕT (t)Pt−1ϕ(t))Ptϕ(t) = (1+ϕ
T (t)Pt−1ϕ(t))Pt−1ϕ(t)− Pt−1ϕ(t)ϕ

T (t)Pt−1ϕ(t)
= Pt−1ϕ(t)

The optimal gain Kt can be written as Kt = Ptϕ(t)

Proof

Post-multiply             to (14) and then multiply 

Pt = Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

∴ Ptϕ(t) =
Pt−1ϕ(t)

1+ϕT (t)Pt−1ϕ(t)
= Kt This agrees with the optimal gain Kt

Kt =
Pt−1ϕ(t)

1+ϕT (t)Pt−1ϕ(t)
(14)

ϕ(t) 1+ϕT (t)Pt−1ϕ(t)



6

Error Correction

Δθ = θ̂ LS (t)− θ̂ LS (t −1) = Kt[ y(t)− ŷ(t |θ̂ LS (t −1))]
∴Δθ = Pt ⋅ϕ(t) ⋅e(t)

(Parameter Estimation Correction) 
= Pt x (Regressor) x (Prediction Error)

We can find a similar expression repeatedly in
• Kalman filter
• Neuron model
• Error Backpropagation in multi-layer neural nets Gain

Real
System

Model
q

Gain

Physical Sense of Pt?
Pt = ϕ(i)ϕT (i)

i=1

t

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

Pt
−1 = ϕ(i)ϕT (i)

i=1

t

∑Or
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Plot regressor data in the m-dimensional vector space.

ϕ(1),ϕ(2),!!,ϕ(t)

To characterize how the regressor data (input) are 
distributed, consider a unit vector  v and quantify the total 
squared strength of                                            in the direction 
of vector v.

Find the max. (min.) of the total squared signal strength. 
à Find the direction of unit vector v that maximizes the 
quadratic function                   subject to               . 

ϕ(i)

ϕ2

ϕ1

m-dim

(
i=1

t

∑ ϕT (i) ⋅v)2 = vT
i=1

t

∑ ϕ(i)ϕT (i) ⋅v

= vT ϕ(i)ϕT (i)
i=1

t

∑ ⋅v = vT Pt
−1v Quadratic form of Pt 

-1

This is an eigenvalue problem.

ϕ(1),ϕ(2),!!,ϕ(t)

vT Pt
−1v v

2
= 1

ϕ2

ϕ1

m-dim

v

vT Pt
−1v

Largest signal
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Quick Math Review: Eigenvalues

The maximization problem can be solved by using Lagrange multiplier l. 
We first define an extended cost functional including the constraint:

L = vT ϕϕT
i=1

t

∑ v − λ(vTv −1)

∂L
∂v

= 0

v = argmax
v
L(v,λ)

Necessary conditions:

2 ϕϕT
i=1

t

∑ v − 2λv = 0 ∴ ϕϕT
i=1

t

∑ v = λv

This implies that v is an eigenvector of matrix ϕ(i)ϕT (i)
i=1

t

∑

The max. direction of unit vector v is:

ϕ2

ϕ1

m-dim

Pt 
-1

Eigen vectors Max. l
Min. l
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Math Review

The Lagrange Multiplier Method

f (x, y)Maximize (minimize)

Subject to g(x, y) = 0

Contours of f (x, y) = d

g(x, y) = 0

At a local maximum point A, the gradient of  

is aligned with the gradient of

f (x, y)
g(x, y)

∂ f
∂x
∂ f
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= λ

∂g
∂x
∂g
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
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⎟
⎟

or ∇x,y f (x, y)− λ ⋅∇x,yg(x, y) = 0

L(x, y,λ) = f (x, y)− λ ⋅ g(x, y)
Define Lagrange Function:

A

The necessary condition for (x,y) is a maximum (minimum) 

point of                   subject to                             is :

for some l.

∂L
∂x

= 0

∂L
∂y

= 0

∂L
∂λ

= 0 g(x, y) = 0

f (x, y) g(x, y) = 0

Differentiable
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Quick Math Review: Eigenvalues

The maximization problem can be solved by using Lagrange multiplier l. 
We first define an extended cost functional including the constraint:

L = vT ϕϕT
i=1

t

∑ v − λ(vTv −1)

∂L
∂v

= 0

v = argmax
v
L(v,λ)

Necessary conditions:

2 ϕϕT
i=1

t

∑ v − 2λv = 0 ∴ ϕϕT
i=1

t

∑ v = λv

This implies that v is an eigenvector of matrix ϕ(i)ϕT (i)
i=1

t

∑

The max. direction of unit vector v is:

ϕ2

ϕ1

m-dim

Pt 
-1

Eigen vectors Max. l
Min. l

f (x, y) g(x, y) = 0
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Error Correction

Δθ = θ̂ LS (t)− θ̂ LS (t −1) = Kt[ y(t)− ŷ(t |θ̂ LS (t −1))]
∴Δθ = Pt ⋅ϕ(t) ⋅e(t)

ϕ(i)ϕT (i)
i=1

t

∑Assume                                         is non-singular.

Pt
−1 = ϕ(i)ϕT (i)

i=1

t

∑ = T

λ1 0

!
0 λm

⎛
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TT
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−1

= (TT )−1
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0
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0 1
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TT

Eigen vectors are in 
the same directions.
Eigenvalues become 
reciprocal.

ϕ2

ϕ1

m-dim
Pt 

-1 Max. l

Min. 1/lPt

T = v1 ! vm( )

TT = T −1

Orthonormal



12

ϕ1

ϕ2

ϕm1
λmin

vm

1
λmax

v1
ϕ *

ϕ *

Δθ = Pt ⋅ϕ(t) ⋅e(t)Error Correction
Suppose that a new sample          (test point) is 
observed, which is on the line of v1 associated 
with the largest eigenvalue of matrix 

In the direction of v1, we have already obtained a 
lot of data; we already know well in this direction.

No need to make a large correction to 

Ptϕ * ∝
1

λmax
Ptϕ*=

1
λmax

ϕ *

Not many data 
have been 
obtained in this 
direction.

Not strong signal strength in this direction: 
Not familiar.

Rely more on new data in this direction

Ptϕ*=
1

λmin
ϕ *

Δθ

Δθ is large.

is small.

ϕ *

ϕ(i)ϕT (i)
i=1

t

∑

Δθ

In summary, the correction gain is 
attenuated depending on how much the system 
already know in each direction:

Less known     à large gain
Plenty of data à small gain

Kt = Ptϕ(t)

Pt 
-1
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Quick Math Review: Positive-Definiteness

xT Ax > 0 For all 
Other than

x ∈ℜm×1

x ≠ 0
Matrix A is Positive-Definite.

A∈ℜm×m

If A is given by A = ϕ(i)
i
∑ ϕT (i) , then A is real, symmetric, and

1) A is at least positive semi-definite with eigenvalues:
λmax = λ1 ≥ λ2 ≥!≥ λm = λmin ≥ 0

! ! !
v1 v2 vm

2) A can be decomposed to

A = v1 ! vm( )
λ1 0

!
0 λm

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

v1
T

!

vm
T

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Orthogonal Matrix

T ∈ℜm×m , TT = T −1

Check property 1)

Consider Quadratic Form:

xT Ax = xT ϕϕT∑ x

= (ϕT x)2∑ ≥ 0

This implies that matrix A 
is positive semi-definite.

Consider a real square matrix

Corresponding eigen vectors

Eigen Decomposition
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Persistently Exciting Input / Regressor

ϕ1

ϕ2

ϕmThe ellipsoid associated 
with 

Pt
−1 = ϕ(i)ϕT (i)

i=1

t

∑
λmax

λmin

m-dimensional regressor space

If
then 

λmin > 0

Pt
−1 = ϕ(i)ϕT (i)

i=1

t

∑
spans the entire 
m-dim space.

ϕ(i)ϕT (i)
i=1

t

∑ is non-singular.

The data must cover the entire m-dimensional regressor space.

Persistently Exciting (PE)

If

for a particular v;

vT ϕ(i)ϕT (i)
i=1

t

∑ ⋅v = 0

(ϕT (i)
i=1

t

∑ ⋅v)2 = 0

ϕT (i) ⋅v = 0, 1≤ ∀i ≤ t

ϕ1

ϕ2

ϕm

v

All the regressor 
points are 
confined within 
this hyperplane.

The ellipsoid 
collapses to the 
hyperplane.

ϕ(i)ϕT (i)
i=1

t

∑
Is singular.

This implies
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Convergence Properties of the Recursive Formula

ΔP = Pt − Pt−1 = −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

≤ 0

Incremental change to Pt

Pt ≤ Pt−1

Negative semi-definite

Non-increasing

Exercise: Show why it is negative semi-definite.

ϕ1

ϕ2

ϕm

ϕ1

ϕ2

ϕm
Initial 
Conditions
P0 = kI

Pt keeps 
shrinking 
unless              .ϕ(t) ≡ 0

Analysis of Convergence Properties: 

θ̂ LS (t) !
t→∞

converge

Recursive Least Squares (RLS) with initial 
conditions:

θ̂(0) =
P0 =

Arbitrary
Positive definite

Converges in the sense lim
t→∞

θ̂(t)− θ̂(t −1) = 0

Goodwin and Sin, Chapter 3

Caveat! This does not mean that      
converges to the true value .

It depends on input (regressor)

Persistent Excitation conditions required.

θ̂ LS (t)
θtrue

ϕ(t)

θ̂ LS (t) !
t→∞

θtrue
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2.5 Estimation of Time-Varying Parameters

Time

Time

ϕ(t)
y(t)

θ Road conditions 
may vary over time.

Real time data

Old data

Recent 
past 
data

W
e

ig
h

t

t

t

t

High

Low

decre
asin

g

Smart traction + suspension control

Plant

Parameter 

Estimation

Adaptation

Law

Feedback

Control

θ̂

ϕ(t) y(t)

Indirect Adaptive Control

Plant conditions, such as road 

conditions, may vary over time. 

How can a control system 

estimate varying parameters in 

real time?

Suppose that the system 

keeps measuring regressors 

and output variables. The 

parameters should be 

estimated based on recent 

past data rather than older 

data.

This parameter estimation 

problem is important for the 

system to adapt to the 

varying environment 

conditions: Adaptive control.
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Time

ϕ(t)
y(t)

Real time data

Old data

Recent 
past 
data

W
ei

gh
t

t

t

High

Low

decreasing

tt-1t-i t-2

The original squared error:

Weighted squared error

Vt (θ ) =
1
t

( y(i)− ŷ(i |θ )
e(i)

! "## $##
i=1

t

∑ )2

Jt (θ ) = e
2(t)+αe2(t −1)+!+α t−1e2(1)

Jt (θ ) = α t−ie2(i)
i=1

t

∑

a
a2

a3
a4

1

a = Exponential Forgetting Factor; 

The Least Squares Estimate:

θ̂(t) = argmin
θ
Jt (θ )

This least square estimate and its recursive version can be 
obtained in the same way as the previous case.

dJt
dθ

= 0 and apply the Matrix Inversion Lemma.

Recursive Least Squares with Exponential Forgetting Factor

Discrete time

0.8
0.64
0.51
0.41
0.33
0.26
0.21
.
.

0 <α ≤1
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θ̂(t) = θ̂(t −1)+ Kt[ y(t)− ŷ(t |θ̂(t −1))]

Kt =
Pt−1ϕ(t)

α +ϕT (t)Pt−1ϕ(t)

Pt =
1
α
Pt−1 −

Pt−1ϕ(t)ϕ
T (t)Pt−1

α +ϕT (t)Pt−1ϕ(t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where t = 1,2,!

Recursive Least Squares with Exponential Forgetting Factor

The only difference is that 1 in the denominator is 
replaced by a and that the updated Pmatrix is divided 
by a. 

Caveat!
When the system enters a “steady-state”, producing the same          ,                       

for a long time, the total squared signal strength keeps increasing in 
that direction of the regressor vector

becomes very thin.

ϕ(t) y(t)

→ Pt = ϕ(i)∑ ϕT (i)( )−1

Pt Pt
−1 = ϕ(i)∑ ϕT (i)Data :

For new data: Ptϕ*≅ 0

0 <α ≤1
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Pt Pt−1
−1 = ϕ(i)∑ ϕT (i)Data :

For new data: Pt−1ϕ*≅ 0

Failure Scenarios

Pt =
1
α
Pt−1 −

Pt−1ϕ(t)ϕ
T (t)Pt−1

α +ϕT (t)Pt−1ϕ(t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Driving along a cornfield

Boring, no change in sensor readings

Pt =
1
α
Pt−1 −

Pt−1ϕ *(t)ϕ *
T (t)Pt−1

α +ϕ *T (t)Pt−1ϕ *(t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
≅ 1
α
Pt−1

Pt ≅
1
α t
P0 →

t→∞ Blows up!

1 < a < 1

Pt−1ϕ*≅ 0

When a car is running through a boring country side,  
almost constant data will be obtained, resulting in  

.
However, the reciprocal of forgetting factor, 

is multiplied repeatedly.

1
α

>1
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0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

P-Matrix eigenvalues

Lamda-1 Lamda-2

Example

P0 =
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
,

ϕ(t) = 1
0

⎛

⎝⎜
⎞

⎠⎟
,

α = 0.85

Blows up

Converges to 0

Pt =
1
α
Pt−1 −

Pt−1ϕ(t)ϕ
T (t)Pt−1

α +ϕT (t)Pt−1ϕ(t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Recursive Least Squares 
with Forgetting Factor
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Remedy

qCovariance Re-setting
qOccasionally, P is re-set to a large positive-definite matrix, such as the identity matrix:

qThis covariance re-setting revitalizes the RLS algorithm.

Pt =κ I , 0 <κ < ∞,@ t = T ,2T ,3T ,......

t = T t = 2T

Covariance
Re-Setting

Covariance
Re-Setting
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0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Lamda-1 Lamda-2

Example

PkT = 1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
, k = 0,1,2,3,......

ϕ(t) = 1
0

⎛

⎝⎜
⎞

⎠⎟
,

α = 0.85

Pt =
1
α
Pt−1 −

Pt−1ϕ(t)ϕ
T (t)Pt−1

α +ϕT (t)Pt−1ϕ(t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Covariance Re-setting

P-Matrix eigenvalues

T = 11
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Remaining Topics

qOrthogonal Projection

qMulti-Output, Weighted Least Squares Estimate

See the Lecture Notes Chapter 2


