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Summary of the previous results on Subspace Methods -1

x(t +1)
y(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Y (t )
! "# $#

= A B
C D

⎛

⎝⎜
⎞

⎠⎟

Θ
! "# $#

x(t)
u(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ϕ (t )
!"# $#

q System parameter matrices, A, B, C, and D, are 
linearly involved in state space representation; 
Once states are obtained from input-output data, 
it is a simple least squares estimate problem.

q The Hankel matrix of impulse response is the 
product of extended observability and 
reachability matrices.

q Singular-Value Decomposition of Hankel matrix H 
gives observability and reachability matrices,

H = OkCk =U1Σ1V1
T Ok =U1Σ1

1/2 Ck = Σ1
1/2V1

T

from which B and C, and then A can be determined.
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Summary of the previous results on Subspace Methods -2

§ Input Data Matrix

U0|k−1 =

u(0) u(1) ! u(N −1)
u(1) u(2) u(N )
" # "

u(k −1) u(k) ! u(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

§ Output Data Matrix

Y0|k−1 =

y(0) y(1) ! y(N −1)
y(1) y(2) y(N )
" # "

y(k −1) y(k) ! y(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

 W0|k−1 =
U0|k−1

Y0|k−1
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⎟
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⎜
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⎞

⎠
⎟
⎟
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Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ζ ,  W0|k−1 =

U0|k−1

Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

q Input output data in the Hankel Matrix form
§ Data Matrix

q Zero-input response reveals the impulse response 
Hankel matrix that is the product of      and    .Ok Ck

U0|3
Y0|3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 g0 g1 g2 g3 g4
0 0 g0 g1 g2 g3 g4 g5
0 g0 g1 g2 g3 g4 g5 g6
g0 g1 g2 g3 g4 g5 g6 g7

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

This block is the 
Hankel matrix H4,4

Zero input

q Zero-input response can be created from arbitrary 
input-output data satisfying the 3 assumptions 
through column manipulation of the Hankel data 
matrix W0|k-1.

Example 18-1
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Summary of the previous results on Subspace Methods -3
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=

u(0) u(1) ! u(N −1)
u(1) u(2) u(N )
! " !

u(k −1) u(k) ! u(k + N − 2)
y(0) y(1) ! y(N −1)
y(1) y(2) ! y(N )
! !

y(k −1) y(k) ! y(k + N − 2)

⎛
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⎟⎟
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!

u(k −1)
y(0)
y(1)
!

y(k −1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

ζ 1 +

u(1)
u(2)
!
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!
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⎟
⎟

ζ 2 +!+
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!

u(k + N − 2)
y(N −1)
y(N )
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⎟
⎟

ζ N

Data Matrix

q Zero-input response can be created from arbitrary input-output data through column manipulation of the 
Hankel data matrix W0|k-1, if it meets the 3 assumptions. 

Zero-Input
Response A linear combination of column vectors of the data matrix 
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Collective Input-Output Hankel Expression
q From state and measurement equations,

y(t) = Cx(t)+ Du(t)
y(t +1) = CAx(t)+CBu(t)+ Du(t +1)

y(t + 2) = CA2x(t)+CABu(t)+CBu(t +1)+ Du(t + 2)
! !

q These equations can be written collectively, 

y(t)
y(t +1)
!

y(t + k −1)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

yk (t)
! "## $##

=

C
CA
%

CAk−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ok
! "# $#

x(t)+

D 0 % 0
CB D &
& ' 0

CAk−2B % CB D

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ψk

! "##### $#####

u(t)
u(t +1)
&

u(t + k −1)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

uk (t)
! "## $##

pk ×1 pk × n pk ×mk mk ×1
q Or, succinctly,

yk (t) = Ok x(t)+Ψkuk (t)
This matrix is a block 
Toeplitz matrix.

x(t +1) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)
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Collective Input-Output Hankel Expression
q Note that concatenating                                            yields the following block Hankel output matrix,

q The input-output relationship,                                            ,  can be expanded to the block Hankel form,

q This is a succinct expression of the following relationship. 

Y0|k−1 = yk (0) yk (1) ! yk (N −1)( )
yk (0) yk (1) ! yk (N −1)

Similarly, U0|k−1 = uk (0) uk (1) ! uk (N −1)( )
X0 ! x(0) x(1) " x(N −1)( )Also, we define

yk (t) = Ok x(t)+Ψkuk (t)
Y0|k−1 = Ok X0 +ΨkU0|k−1

y(0) y(1) ! y(N −1)
y(1) y(2) y(N )
" # "

y(k −1) y(k) ! y(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Y0|k−1
$ %&&&&&&& '&&&&&&&

=

C
CA
"

CAk−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ok
! "# $#

x(0) x(1) % x(N −1)( )
X0

! "##### $#####
+

D 0 % 0
CB D &
& ' 0

CAk−2B % CB D

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ψk

! "##### $#####

u(0) u(1) % u(N −1)
u(1) u(2) u(N )
& ' &

u(k −1) u(k) % u(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

U0|k−1
! "####### $#######
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Three Assumptions on Data

y(0) y(1) ! y(N −1)
y(1) y(2) y(N )
" # "

y(k −1) y(k) ! y(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Y0|k−1
$ %&&&&&&& '&&&&&&&

= Ok x(0) x(1) ! x(N −1)( )
X0

! "##### $#####
+Ψk

u(0) u(1) % u(N −1)
u(1) u(2) u(N )
& ' &

u(k −1) u(k) % u(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

U0|k−1
! "####### $#######

q For constructing subspace identification algorithms, we have to make three key assumptions on data. 

q Assumption A-1: rank X0 = n. x1

xn

x2

q Assumption A-2:

mk × Npk × N

rankU0|k−1 = mk
Recall ϕ(t)ϕT (t) = (full rank)∑

ϕ(0) ! ϕ(N −1)( )
ϕT (0)
!

ϕT (N −1)

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

u(0) ! u(N −1)( )q Assumption A-3: rank
U0|k−1
X0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= mk + n

X0 and U0|k-1 are not collinear. No linear state feedback: u = Kx.

In other words, the spaces spanned by the input matrix and the state matrix do not intersect.

span X0 ∩ span U0|k−1 ={φ} Experiments should not be taken with linear state feedback, u = Kx.

The state vector is sufficiently excited, or the system is reachable.

The input sequence is persistently exciting of order k.
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LQ Decomposition

q We can find multiple zero-input responses by using different vectors z. 
q Under the 3 assumptions on the data matrix, (km+kp) linearly independent vectors z can produce zero-input 

responses.

U0|k−1
Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

L11 0

L21 L22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Q1
T

Q2
T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

uk (0)

yk (0)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

0
y*k (0)

⎛

⎝
⎜

⎞

⎠
⎟ =

U0|k−1
Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ζ

q Of particular interest is the input-output pair, uk(0) and yk(0), corresponding to zero-input response:

Note that such an input-output pair can be created by a linear combination of the column vectors of the data matrix. 

q This can be achieved by column operations, but an effective algorithm, called LQ Decomposition, 
exists to transform the data matrix (a rectangular matrix) to a block lower triangular matrix. Namely, 

U0|k−1
Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ζ1 ζ2 ! ζ km+kp( )
Q=(Q1,Q2)

" #$$$$ %$$$$
=

L11 0

L21 L22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

where z1,z2,… can be made orthogonal through 
the Householder transformation. These orthogonal 
vectors constitute orthogonal matrix Q.

Zero-input response

Note 

where                         and                          are lower-triangular. L11 ∈ℜ
km×km L22 ∈ℜ

pm× pm

QTQ =
Q1
T

Q2
T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
Q1 Q2( ) = I 0

0 I
⎛

⎝⎜
⎞

⎠⎟

Recall Example 18-1.
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QR Decomposition
q LQ Decomposition is the transpose of so-called “QR Decomposition”. An arbitrary rectangular matrix 

can be decomposed to an orthonormal matrix Q and an upper triangular matrix in the following form:

q Matrix Q consists of unit-length column vectors that are orthogonal to each other.

q MATLAB  code:  qr(A),   (Q, R) = qr(A) returns an orthonormal matrix Q and an upper triangular matrix of 
the above form.

q There are effective algorithms to obtain the QR factorization of a rectangular matrix.
q Gram-Schmidt procedure – numerically not stable
q Householder Reflection – widely used method

A = QR = Q1 Q2( ) R1
0

⎛

⎝
⎜

⎞

⎠
⎟

A∈ℜm×n

m ≥ n R1 =

* * ! *
0 * * "
" 0 * *
0 ! 0 *

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∈ℜn×n

QTQ =
Q1
T

Q2
T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
Q1 Q2( ) = Q1

TQ1 Q1
TQ2

Q2
TQ1 Q2

TQ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

In 0

0 Im−n

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= Im

n m-n
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QR Decomposition 
= Transpose of LQ Decomposition

A = QR = Q1 Q2( ) R1
0

⎛

⎝
⎜

⎞

⎠
⎟ m ≥ n R1 =

* * ! *
0 * * "
" 0 * *
0 ! 0 *

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∈ℜn×n

q QR Decomposition Algorithm based on 
the Gram-Schmidt orthogonalization 
method

A = a1 a2 ! am( )
a1 = u1

a2

< a2,
u1
|u1 |

>
B

O

C

A

OC
! "!!

= OA
! "!!

−OB
! "!!

OC
! "!!

= OA
! "!!

−OB
! "!!

u2
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u2 = a2− < a2,
u1
|u1 |

>
u1
|u1 |

= I −
u1u1

T

|u1 |
2

⎛

⎝
⎜

⎞

⎠
⎟ a2

A = a1 a2 ! am( )

a1 = u1

a2

< a2,
u1
|u1 |

>
B

O

C

A

OC
! "!!

= OA
! "!!

−OB
! "!!

u2

Orthonormal Basis

a2

O

e2
a1

e1
< a2,e1 >

< a2,e2 >
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MOESP:
The Multivariable Output Error State sPace method

U0|k−1
Y0|k−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

L11 0

L21 L22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Q1
T

Q2
T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

q From the LQ decomposition:

U0|k−1 = L11Q1
T

Y0|k−1 = L21Q1
T + L22Q2

T

and

q Recall the collective input-output relationship using Hankel data matrices. 

Y0|k−1 = Ok X0 +ΨkU0|k−1

y(0) y(1) ! y(N −1)
y(1) y(2) y(N )
" # "

y(k −1) y(k) ! y(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Y0|k−1
$ %&&&&&&& '&&&&&&&

=

C
CA
"

CAk−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ok
! "# $#

x(0) x(1) % x(N −1)( )
X0

! "##### $#####
+

D 0 % 0
CB D &
& ' 0

CAk−2B % CB D

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ψk

! "##### $#####

u(0) u(1) % u(N −1)
u(1) u(2) u(N )
& ' &

u(k −1) u(k) % u(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

U0|k−1
! "####### $#######

Or the succinct form

q Substitution of the LQ decomposed relations yields

Y0|k−1 = Ok X0 +Ψk L11Q1
T = L21Q1

T + L22Q2
T
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Ok X0 +Ψk L11Q1
T = L21Q1

T + L22Q2
T

MOESP (Continued)

q Post multiplying Q2 to yields Ok X0Q2 = L22

since
Q1
T

Q2
T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
Q1 Q2( ) = I 0

0 I
⎛

⎝⎜
⎞

⎠⎟

q Taking Singular-Value Decomposition of L22,

L22 = U1 U2( ) Σ1 0

0 0

⎛

⎝
⎜

⎞

⎠
⎟
V1
T

V2
T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=U1Σ1V1

T ∴Ok X0Q2 =U1Σ1V1
T

q Splitting this, we can find the observability matrix given by Ok =U1Σ1
1/2

q The first block of the observability matrix is the matrix C: C = Ok (1: p, : )

q As before, the A matrix can be obtained from Ok (1: p(k −1), : )A = Ok ( p +1: pk, : )
∴ A = Ok (1: p(k −1), : )

#Ok ( p +1: pk, : )
q Matrices B and D can also be determined from 

though computation is  more tedious.
Ok X0 +Ψk L11Q1

T = L21Q1
T + L22Q2

T

Ok =

C
CA
!

CAk−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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N4SID: (Read “Enforce It”.)
Numerical algorithm for Subspace State Space System Identification

q The N4SID method developed by Van Overschee and De Moor [1994] is one of the most prevailing 
algorithms for Subspace System Identification.

q This method, too, uses LQ Decomposition and Singular Value Decomposition. However, its data structure 
differs from the previous methods, and it applies a different geometric approach, called Oblique Projection.

q The following is the outline of the algorithm.

q Data structure:

Time

0 2k-1kk -1

past future
X p ! X0 X f ! Xk

Yp ! Y0|k−1 U f !Uk|2k−1Up !U0|k−1 Yf ! Yk|2k−1

Yp = Ok X0 +ΨkU p Yf = Ok X f +ΨkU f

U f !Uk|2k−1 =

u(k) u(k +1) " u(k + N −1)
u(k +1) u(k + 2) " u(k + N )
# # $ #

u(2k −1) u(2k) " u(2k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Up !U0|k−1 =

u(0) u(1) " u(N −1)
u(1) u(2) " u(N )
# # $ #

u(k −1) u(k) " u(k + N − 2)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟
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Assumptions on Data

q Assumption 1: States visit every dimension.

rank X p = rank X f = n

U0|2k−1 =
Up

U f

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
, rank

Up

U f

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2km

q Assumption 2: Persistently exciting inputs.

q Assumption 3: No linear state feedback.

span X p ∩ span
Up

U f

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
={φ},

span X f ∩ span
Up

U f

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
={φ}

q For a data matrix satisfying Assumptions 1 – 3, 
any input-output response can be expressed as 
linear combination of the column vectors of the 
data matrix:

∃ζ ∈ℜN   such that   

u f
up
yp
y f

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

U f

U p

Yp
Yf

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

ζ

q Of particular interest are zero-input responses.

* 0 0 0
* * 0 0
* * * 0
* * * *

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

U f

U p

Yp
Yf

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

ζ1 ζ2 !( )
This block should be zero, 
because all the inputs of both past 
and future times are zero and the 
outputs were 0 in the past time.
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LQ Decomposition

q Writing the past data matrix as
Wp =

Up

Yp

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,

we apply LQ Decomposition to the data matrix

U f

Wp

Yf

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

R11 0 0

R21 R22 0

R31 R32 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Q1
T

Q2
T

Q3
T

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

km

kp

k(m+p)

km

Nkp
k(m+p)

where Qi
TQj = 0, i ≠ j

Q = Q1 Q2 Q3( ) : orthogonal

R11 ∈ℜ
km×km , R22 ∈ℜ

k (m+ p)×k (m+ p)
: lower triangular

rankR22 = rank
L11 0

L21 L22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= km+ n < k(m+ p)

q From (1), we obtain three equations:

U f = R11Q1
T

(1)

Wp = R21Q1
T + R22Q2

T

Yf = R31Q1
T + R32Q2

T

(2)

(3)

(4)

q Since Uf is of full rank, R11 is also full rank and 

non-singular. Therefore, from (2)

Q1
T = R11

−1U f

q Recall the analysis in the MOESP method,

Therefore, R22 is rank-deficit. Using a 

pseudoinverse in (3),

Q2
T = R22

# (Wp − R21Q1
T )

(5)

(6)
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N4SID Method

Yf = R31Q1
T + R32Q2

T (4)

Q1
T = R11

−1U f

Q2
T = R22

# (Wp − R21Q1
T )

(5)

(6)

q Substituting (5) and (6) into (4),

Yf = R31Q1
T + R32R22

# (Wp − R21Q1
T )

= (R31 − R32R22
# R21)R11

−1U f + R32R22
#Wp

q Examine the relationship between Uf and Wp.
Recall

spanWp = span
Up

Yp

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= span

Up

X p

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Yp = Ok X p +ΨkU p
This implies that Yp is spanned by Xp and Up. In 
other words, all the row vectors of Yp are linear 
combinations of row vectors involved in Xp and 
Up. Therefore,

q From Assumption 2, rank
Up

U f

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2km

This implies no overlap between bases of Up and Uf.

∴spanUp ∩ spanU f ={φ}

q From Assumption 3: No linear state feedback,

∴spanX p ∩ spanU f ={φ}

q Therefore, we conclude that 
∴spanU f ∩ spanWp ={φ}

(7)

q Eq.(7) represents Yf as the sum of two terms that exist 
in two subspaces having no overlap in their bases.

q In linear algebra, they are called Direct Sum.

Yf =α ⋅U f + β ⋅Wp

No overlap in bases: Direct Sum

(8)
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N4SID Method

q We can also find a relationship between 
subspaces spanned by Uf and Xf from:

Yf = Ok X f +ΨkU f

q From Assumption 3: No linear state feedback

spanX f ∩ spanU f ={φ}

Therefore, is a Direct Sum.Yf = Ok X f +ΨkU f

q Next, check the relationship between Xf and Wp. 
One of the elements in Xf can be written as

x(k + i) = Akx(i)+ Ak−1B Ak−2B ! B⎛
⎝

⎞
⎠

Ck
opposite direction of Ck

" #$$$$$ %$$$$$

u(i)

u(i +1)

&
u(i + k −1)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

q Collectively, this relationship can be expressed as

X f = A
k X p + CkU p

x(k) x(k +1) ! x(k + N −1)( )

x(0) x(1) ! x(N −1)( )
q Recall Yp = Ok X p +ΨkU p

X p = Ok
# (Yp −ΨkU p )

(9) (10)

Substituting this into (10)

X f = A
kOk

# (Yp −ΨkU p )+ CkU p

= AkOk
#Yp + (Ck − A

kOk
#Ψk )Up

q Xf is spanned by Up and Yp, or

X f ∈spanWp
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N4SID Method

q So, comparing the two expressions on Yf, and examining 
the properties of the subspaces, we can find:

Yf = (R31 − R32R22
# R21)R11

−1U f + R32R22
#Wp(7)

Yf = ΨkU f + Ok X f(9)

Direct Sum

Direct Sum
X f ∈spanWp

The same 
subspace

No overlap in bases

No overlap in bases

q The conclusion is that the second 
term in both equations must be 
the same.

∴Ok X f = R32R22
#Wp

spanU f

spanWp

span X f

X f ∈spanWp

Schematic of subspaces

spanU f ∩ spanWp ={φ}
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N4SID Method

∴Ok X f = R32R22
#Wp

q Take Singular-Value Decomposition of the right-
hand side

R32R22
#Wp = U1 U2( ) Σ1 0

0 0

⎛

⎝
⎜

⎞

⎠
⎟
V1
T

V2
T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=U1Σ1V1

T

X f = T
−1Σ1

1/2V1
T , Ok =U1Σ1

1/2T

q This can be split between       and XfOk

q There are two methods for determining system 
parameters, (A,B,C,D), one is based on the 
decomposition of Xf and the other on      . The 
following is the former.

Ok

q Xf contains a series of states:
x(k),x(k +1),!,x(k + N −1)

q Based on this series of states and the input-output 
data, we can form the following 4 matrices.
Xk = x(k) ! x(k + N − 2)( )∈ℜn×(N−1)

Xk+1 = x(k +1) ! x(k + N −1)( )∈ℜn×(N−1)

Uk|k = u(k) ! u(k + N − 2)( )∈ℜm×(N−1)

Yk|k = y(k) ! y(k + N − 2)( )∈ℜ p×(N−1)

q There are related in the state and measurement 
equations:

Xk+1
Yk|k

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= A B

C D
⎛

⎝⎜
⎞

⎠⎟
Xk
Uk|k

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

q This has a unique solution,

Â B̂
Ĉ D̂

⎛

⎝
⎜

⎞

⎠
⎟ =

Xk+1
Yk|k

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Xk
Uk|k

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

T
Xk
Uk|k

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Xk
Uk|k

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

T⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−1
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Comparison between MOESP and N4SID

a2

O

e2
a1

e1
< a2,e1 >

< a2,e2 >

a2

O
a1

MOESP N4SID

Orthogonal Projection Oblique Projection

x

Projection of x along       onto  a2 a1

Projection of x along
onto  a2a1

Mathematical techniques are different.

Almost same performance except for ill-conditioned data


