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10. Non-Parametric Identification of Linear Time-Invariant Systems

Review

Linear 
Time-Invariant

System

u(t) y(t)

Input

Impulse
u(t)

time

Impulse
Responsey(t)

time

g(t)

Convolution
y(t) = g(τ )u(t −τ )dτ

0

∞
∫

Impulse

time

u(t)

t −τ τ t

An arbitrary linear time-invariant (LTI) system can be completely characterized with an impulse 
response: g(t). 

Output y(t) can be expressed as superposition 
of the effect of all the impulses given to the 
system until time t.
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Discrete-Time Impulse Response

Impulse 
Response

time

g(k)

g(1)
g(2)

g(0)

q We will mainly deal with discrete-time systems 
with impulse response:

y(t) = g(k)u(t − k)
k=0

∞

∑

g(k) | k = 0,1,2,3,!{ }
t = kΔtwhere

q For brevity, we assume Dt = 1, and use t and k in 
an interchangeable manner.

Convolution

q Time-Shift Operator, q, advances the time 
index one unit time ahead:

q Using this time-shift operator, we can write the 
impulse response

qu(t) = u(t +1) q2u(t) = u(t + 2)

q−1u(t) = u(t −1)

y(t) = g(k)u(t − k)
k=0

∞

∑

= g(k)q−ku(t)
k=0

∞

∑ = G(q)u(t)

where G(q) = g(k)q−k
k=0

∞

∑
q The impulse response is represented as a 

polynomial of time shift operator q. We call 
G(q) Transfer Operator or Transfer Function.
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Impulse Response Test

q Impulse Response Test is a simple method for identifying a Linear Time-
Invariant (LTI) system, i.e. determine the coefficients {g(k)|k=1,2,3…} or G(q), 
by applying an impulse input and observing the output.

q A challenge is to reduce the effect of noise or disturbance acting on the system.

q A Naïve Method

Linear 
Time-Invariant

System

u(t)
y(t)

v(t) Noise

Impulse

time u(t − k) =
A, t = k
0, t ≠ k

⎧
⎨
⎪

⎩⎪

y(t) = g(k)u(t − k)
k=0

∞

∑ + v(t)

y(t) = Ag(t)+ v(t)

ĝ(t) = 1
A
y(t) = g(t)+ 1

A
v(t)

t = 0,1,2,!

q The impulse response can be identified by dividing the 
observed output by the input magnitude A.

q However, it comes with the noise attenuated by the input 
amplitude.

q To reduce the effect of the noise, the input amplitude must 
be increased, but there is a physical limitation.

u(t)

time

g(k)

g(1)
g(2)

g(0)
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Correlation Method for Identifying Impulse Response Coefficients
q The naïve impulse response test cannot produce a reliable result when the data are corrupted with noise.

q A better alternative is Correlation Method, which allows us to eliminate the effect of noise.

q Idea: Apply an input sequence u(t) that is uncorrelated with noise v(t) to a linear time-invariant system to 
identify. When taking input-output cross-correlation, the noise that is uncorrelated with the input can be 
eliminated and, thereby, the system can be identified without being affected by noise.

q The input sequence can be a random signal that is uncorrelated (white).

LTI
g(k)

k = 0,1,2…u(t) y(t)

v(t) Noise

Cross-Correlation

y(t)
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Correlation Method for Identifying Impulse Response Coefficients
q The naïve impulse response test cannot produce a reliable result when the data are corrupted with noise. 
q A better alternative is Correlation Method, which allows us to eliminate the effect of noise.
q Idea: Apply an input sequence u(t) that is uncorrelated with noise v(t) to a linear time-invariant system to 

identify. When taking input-output cross-correlation, the noise that is uncorrelated with the input can be 
eliminated and, thereby, the system can be identified without being affected by noise.

q The input sequence can be a random signal that is uncorrelated (white).

LTI
g(k)

k = 0,1,2…u(t) y(t)

v(t) Noise

Cross-Correlation

y(t)
q Let be the noise-free output of the system. 

Namely, the measured noise-corrupted output is 
written as 

q The input-output cross-correlation is given by 

y

y(t) = y(t)+ v(t)

Ruy (τ ) = E[u(t)y(t +τ )]

= E[u(t)y(t +τ )]+ E[u(t)v(t +τ )]
= E[u(t)y(t +τ )] 0, Note that the noise is uncorrelated with the input sequence. 

q We need the Wiener-Hopf Equation to obtain the coefficients of impulse response from the above 
expression.



9

q The Wiener-Hopf Equation provides the theoretical foundation for the correlation method.
q Consider a time-sequence input u(t), which is assumed to be wide-sense stationary.
q Recall that, in a wide-sense stationary process, 

§ The mean does not vary over time; and
§ Auto correlation exists and it does not depend on time.

The Wiener-Hopf Equation

Ru(τ ) = E[u(t)u(t +τ )]
q We also assume ergodicity, that is, ensemble mean is equal to 

time average. Therefore, the autocorrelation can be written as

Ru(τ ) = limN→∞

1
2N +1

u(t)u(t +τ )
t=−N

N

∑

LTI
g(k)

k = 0,1,2…

u(t) y(t)

g(k) | k = 0,1,2,3,!{ }
q Suppose that the input sequence is given to an Linear Time Invariant (LIT) system with impulse response;

q Consider the cross-correlation between the input and the output:

Ruy (τ ) = E[u(t)y(t +τ )]



q This cross-correlation can be written as

q Substituting the convolution equation into                    and swapping the two summations yield
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The Wiener-Hopf Equation

Ruy (τ ) = E[u(t)y(t +τ )] = limN→∞

1
2N +1

u(t)y(t +τ )
t=−N

N

∑
y(t +τ ) = g(τ )u(t +τ − k)

k=0

∞

∑
y(t +τ )

Ruy (τ ) = limN→∞

1
2N +1

u(t)
t=−N

N

∑ g(k)u(t +τ − k)
k=0

∞

∑

= lim
N→∞

1
2N +1

u(t)u(t +τ − k)
t=−N

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥k=0

∞

∑ g(k) = Ru(τ − k)g(k)
k=0

∞

∑
q Therefore, the input-output Cross-Correlation is equal to the convolution of the input autocorrelation with 

the impulse response of the linear time invariant system. This is the Wiener-Hopf Equation.

∴Ruy (τ ) = Ru(τ − k)g(k)
k=0

∞

∑ y(t) = u(t −τ )
τ=0

∞

∑ g(τ )
Analogy
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The Wiener-Hopf Equation and the Correlation Method for System Identification
q Suppose that the LTI system to identify is stable. Then, lim

t→∞
g(t) = 0

Truncate

g(t)q The impulse response coefficients can be truncated: 
Finite Impulse Response,

q The Wiener-Hopf Equation, too, can be truncated:
q This can be written for .

g(k) | k = 0,1,2,!,N{ }
Ruy (τ ) = Ru(τ − k)g(k)

k=0

N

∑0 ≤ τ ≤ N
τ = 0 : Ruy (0) = Ru(0)g(0)+ Ru(−1)g(1)+!+ Ru(−N )g(N )

!
τ = N : Ruy (N ) = Ru(N )g(0)+ Ru(N −1)g(1)+!+ Ru(0)g(N )

Or, in vector and matrix form
Ruy (0)

Ruy (1)

!
Ruy (N )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

Ru(0) Ru(−1) " Ru(−N )

Ru(1) Ru(0) !

! # !
Ru(N ) " " Ru(0)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

RN
! "###### $######

g(0)
g(1)
%

g(N )

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟
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The Wiener-Hopf Equation and the Correlation Method for System Identification

q Assuming that the above matrix RN is non-singular, 
we can obtain the coefficients of impulse response.

g(0)
g(1)
!

g(N )

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= RN
−1

Ruy (0)

Ruy (1)

!
Ruy (N )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

q Consider a random signal that is uncorrelated 
(white), as mentioned previously.

Ru(τ ) = E[u(t)u(t +τ )] =
λ : τ = 0
0 : τ ≠ 0

⎧
⎨
⎪

⎩⎪

q The matrix RN then becomes diagonal.

RN =

λ 0
λ
!

0 λ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

q Therefore, the impulse response coefficients are

ĝ(t) = 1
λ
Ruy (t), t = 0,1,!,N

q Note that the input sequence is generated such 
that it does not correlate with noise. Therefore, it 
is eliminated, as shown previously. This is the 
Correlation Method for identifying impulse 
response coefficients.

q In practice, completely noise free identification is 
infeasible, because it is infeasible to generate an 
input sequence that is perfectly uncorrelated with 
noise.

RN =

Ru(0) Ru(−1) ! Ru(−N )

Ru(1) Ru(0) !

! " !
Ru(N ) ! ! Ru(0)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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A Frequency-Domain Approach to Non-Parametric System Identification

q The correlation method for identifying coefficients of 
impulse response is a time-domain approach to 
identifying linear time-invariant systems. The method 
is underpinned by the Wiener-Hopf Equation.

q While impulse response is a time-domain 
representation of LTI systems, there is another 
representation of LTI systems, that is the one based 
on Frequency Response. Bode plot and Nyquist plot 
are examples of the frequency-domain graphical 
representation.

q The frequency-domain approach has been widely 
used in industry. It is practical and robust, having 
many effective tools underpinned by important 
theories and techniques.

q To learn the frequency-domain approach, we need to 
introduce, or review, 
§ Discrete-Time Fourier Transform, 
§ Power Spectrum and Cross-Spectrum,
§ Frequency Transfer Function, and 
§ Coherence.

Bode Plot

Nyquist Plot
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Discrete-Time Fourier Transform
q Consider a time sequence

!,x(t −1),x(t),x(t +1),!{ }

x(t){ }
X (ω ) ! x(k)exp(−iωk)

k=−∞

∞

∑
where exp(−iωk) = cosωk + isinωk

q Note that is a complex function of w ;X (ω )

q is a periodic function:X (ω )

X (ω + 2π ) = X (ω ), −π ≤ω < π

q Caveat! For brevity we have set Dt to 1, but to obtain the real, 
physical frequency, we must convert the frequency w used in 
DTFT to the real, physical frequency:

treal = Δt ⋅ k ω realtreal =ω realΔt

ω
!"#

⋅ k

q Discrete-Time Fourier Transform (DTFT) of 
is given by 

∴ω real =
ω
Δt

Example: If Dt = 1 ms, then ω real =ω ×103rad / s

−π ≤ω < π → −103π ≤ω real <10
3π

q Inverse Transform

X (ω )
−π

π
∫ exp(iωk)dω = x(ℓ)exp(−

ℓ=−∞

∞

∑ iωℓ)
−π

π
∫ exp(iωk)dω

= x(ℓ)
ℓ=−∞

∞

∑ exp(iω (k − ℓ))dω
−π

π
∫ = 2π x(k)

q Inverse DTFT completely recovers the original . x(t){ }
∴x(k) = 1

2π
X (ω )

−π

π
∫ exp(iωk)dω

ℓ ≠ k : 0
ℓ = k : 2π

⎧
⎨
⎪

⎩⎪

x(t) Dt
x(t +1)
x(t)
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Power Spectrum
q Power Spectrum is the Fourier Transform of Auto-

Correlation.
q Consider a wide-sense stationary sequence {s(t)}, 

for which the following auto-correlation exists.

Rs(τ ) = E[s(t)s(t +τ )]

Φs(ω ) = Rs(τ )exp(−iωτ )
τ=−∞

∞

∑

t

s(t)

τ

Rs(τ )

τ −π π

Φs(ω )
Auto-Correlation Power Spectrum

q White Noise: Uncorrelated noise is called White 
noise, because its power spectrum is uniform, i.e. all 
the frequency components are equally involved.

Re(τ ) = E[e(t)e(t +τ )] =
λ; τ = 0
0; τ ≠ 0

⎧
⎨
⎪

⎩⎪
q Power Spectrum of White (uncorrelated) noise

Φe(ω ) = Re(τ )exp(−iωτ )
τ=−∞

∞

∑ = λe0 = λ
q Taking DTFT, we can obtain its power spectrum:

Rs(τ )

τ −π π

Φs(ω )

Rs(τ )

τ −π π

Φs(ω )

λ λ Uniform distribution

One point at the origin In optics, white light

q Band-limited White noise
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Frequency Transfer Function and Cross-Spectrum

q Recall that, given a transfer function G(s) obtained from a differential equation in continuous time through  
Laplace transform, we can find its frequency transfer function              by replacing s by      .

q Likewise, given a discrete-time transfer operator (function) G(q), its frequency transfer function can be 
obtained by replacing q by         ; . 

q Let                be the cross-correlation from input u to output y of a LTI system. The Cross-Spectrum from 
input to output is the discrete-time Fourier Transform of the input-output cross-correlation.

q We can show that the frequency transfer function is given by the cross-spectrum divided by the input power 
spectrum.

Φuy (ω ) = Ruy (τ )exp(−iωτ )
τ=−∞

∞

∑

Ruy (τ )

G(iω )

eiω G(eiω )

G(eiω ) =
Φuy (ω )
Φu(ω )

iω
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Proof of 

Φuy (ω ) = Ruy (τ )exp(−iωτ )
τ=−∞

∞

∑ = g(k)Ru(τ − k)
k=0

∞

∑ exp(−iωτ )
τ=−∞

∞

∑ ← Multiplying exp(−iωk)exp(iωk)

= g(k)exp(−iωk) Ru(τ − k
s
!)

τ=−∞

∞

∑ exp(−iω (τ − k
s
!))

k=0

∞

∑ = g(k)exp(−iωk) Ru(s)
s=−∞

∞

∑ exp(−iωs)
k=0

∞

∑
= G(eiω ) ⋅Φu(ω )

Ruy (τ )

G(eiω ) =
Φuy (ω )
Φu(ω )

q Consider a LTI system with impulse response coefficients .

q Recall the Wiener-Hopf Equation relating the input-output cross-correlation to input 
autocorrelation

Ruy (τ ) = g(k)Ru(τ − k)
k=0

∞

∑
where the input sequence is assumed to be wide-sense stationary. 

g(k), k = 0,1,!

Ru(τ )

q Taking Discrete-Time Fourier Transform of the cross-correlation and using the Wiener-Hopf equation yield,

G(q) = g(k)q−k
k=0

∞

∑ →G(eiω )
∴G(eiω ) =

Φuy (ω )
Φu(ω )

Recall
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Bode Plot

q A Bode Plot can be generated based on the above formula:

q Suppose that we have input output data

q Compute auto-correlation of the input and the cross-
correlation with the output, and then compute power spectrum 
and cross-spectrum.

q Note that cross spectrum is a complex function, and thereby 
the frequency transfer function is a complex function of 
frequency. Computing the magnitude and phase angle of 
yields the magnitude and phase diagrams of Bode plot.

q It is known that as the number of data tends to infinity, the 
estimated transfer function converges to the true transfer 
function in average:

q However, its variance does not converge to zero.
q Experimentally obtained Bode plots are, in general, not 

smooth. The jagged Bode plot can be smoothed out by using 
a local averaging technique.

q Hamming Window is widely used for smoothing:

G(eiω ) = (Cross Spectrum)
(Power Spectrum)

{(u(t), y(t)) | t = 1,2,!,N}

ĜN (e
iω ) →

N→∞
G0(e

iω )

Local averaging window

Distribution of 
experimental resultsSmoothed 

curve

Spectro Analyzer. 19

G(eiω )
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Properties of Power Spectrum, Cross Spectrum, and Frequency Transfer Function 

q Power spectrum                 is a real even function.Φu(ω )

Φu(−ω ) = Φu(ω ) Φu(ω ) = Ru(τ )exp(−iωτ )
τ=−∞

∞

∑
= Ru(0)e0 + Ru(1)e− iω + Ru(−1)eiω + Ru(2)e− i2ω + Ru(−2)ei2ω +!

= Ru(0)+ Ru(1)e− iω + Ru(1)eiω + Ru(2)e− i2ω + Ru(2)ei2ω +!

= Ru(0)+ Ru(1)cosω + Ru(2)cos2ω + Ru(3)cos3ω +! :  real

Imaginary terms cancel

q Cross spectrum                 is a complex, skew-symmetric function.Φuy (ω )

Φuy (−ω ) = Φ yu(ω ) Φuy (−ω ) = Ruy (τ )e
iωτ

τ=−∞

∞

∑ = Ruy (−τ ')e
− iωτ '

τ '=∞

−∞

∑ ← Ruy (τ ) = Ryu(−τ )

= Ryu(τ ')e
− iωτ '

τ '=−∞

∞

∑ = Φ yu(ω )

q If u(t) and v(t) are uncorrelated, the power spectrum of y = u + v is

Φ y (ω ) = Φu(ω )+Φv (ω ) ∵Ry (τ ) = Ru(τ )+ Rv (τ )

exp(−iωk) = cosωk + isinωkRecall
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G(eiω ) = a + ib

Properties of Power Spectrum, Cross Spectrum, and Frequency Transfer Function 

q The squared magnitude of a frequency transfer function                   is given byG(eiω )
2

G(eiω )
2
= G(eiω )G(e− iω )

Frequency transfer function is a complex function: 

G(e− iω ) = a − ib, G(eiω )G(e− iω ) = (a + ib)(a − ib) = a2 + b2

q For 

Φ y (ω ) = G(e
iω )

2
Φu(ω )

y(t) = G(q) ⋅u(t)

See the proof in Lecture Notes 
Chapter 11, pp.4-5.

LTIu(t) y(t)

Φu(ω )
G(eiω ) Φ y (ω )



22

Coherence
q Coherence is a measure for evaluating the fidelity of identified transfer function .

q Definition: 

G(eiω )

γ 2(ω ) !
Φuy (ω )

2

Φu(ω )Φ y (ω )
0 ≤ γ 2(ω ) ≤1

No fidelity High fidelity

Linear 
Time-Invariant

System

u(t)
y(t)

v(t) Noise
q Suppose that noise and/or disturbance v(t) acts on 

the system as an additive term.

y(t) = y(t)+ v(t) = G(q) ⋅u(t)+ v(t)

q If u(t) and v(t) are uncorrelated,

Φ y (ω ) = Φ y (ω )+Φv (ω ) = G(e
iω )

2
Φu(ω )+Φv (ω )

q Substituting this into the coherence and noting that , andΦuy (ω ) = G(e
iω )Φu(ω )

γ 2(ω ) !
G(eiω )

2
Φu(ω )

G(eiω )
2
Φu(ω )+Φv (ω )

≤1
If no noise and disturbance, then coherence becomes 1.

Φuy (ω )
2
= G(eiω )

2
Φu(ω )( )2
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Coherence

qLow coherence occurs due to

§ Exogenous disturbance and noise
§ Distortion due to nonlinearity
§ Leak in Fast Fourier Transform 

(F.F.T.) 

q Coherence is used for assuring 
whether the identified transfer function 
is reliable. It shows a flag when some 
of the disturbance, nonlinearity, etc. is 
occurring. 

q Coherence also shows in which 
frequency range it is reliable.

C
oh
er
en
ce

1

0.5

0
Good fidelity 


