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Augmenting / Lifting the Input Space  
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qA focal point of Part 4 Machine Learning and 
Nonlinear System Modeling: Lifting the input 
space

qLinearly separable classification: Not linearly 
separable problems, such as XOR, can be 
made linearly separable by augmenting the 
feature space.

qHidden units of a neural network can create 
such internal variables to augment the 
space.

qKernel methods recast the input space to a 
high dimensional space, including an infinite 
dimensional space.

qGaussian Process exploits covariance 
kernels to indirectly deal with high-
dimensional features.  x

f (x)

x1 x2 x3x*
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The final two lectures of 2.160 
aim to extend the methodology of input space augmentation to 

Linearization of Nonlinear Dynamical Systems through Lifting Dynamics.

Linear

Nonlinear

x1

x2

x3

dx
dt

= f (x)

dz
dt

= Az

dx
dt

= f (x,u)

dz
dt

= Az + Bu

Linear state equations

z :  High dimensional

Nonlinear state equations

x :  Low dimensional
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A Lucky Example
qConsider the following 2nd-order 

nonlinear dynamical system:
dx1
dt

= ax1

dx2
dt

= b(x2 − x1
2 )

z1 = x1, z2 = x2 , z3 = x1
2

q Introducing a new set of variables:

qWe can rewrite the original state 
equation as:

dz1
dt

= az1

dz2
dt

= b(z2 − z3)

qThe evolution of the third variable z3 is 
given by differentiating it.

dz3
dt

=
dx1

2

dt
= 2x1

dx1
dt

= 2x1ax1 = 2ax1
2 = 2az3

qTherefore, the system is represented as a 
linear 3rd order system.

d
dt

z1
z2
z3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
=

a 0 0
0 b −b
0 0 2a

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

z1
z2
z3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

qNote that no approximation is used. The 
lifted system is linear and exact.
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z3

z2 z1

The trajectories are 
constrained in this curve: 

z3 = z1
2

3D linear dynamics trajectories

2D nonlinear 
dynamics trajectories

a = -0.05

b = -1.0
d
dt

z1
z2
z3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
=

a 0 0
0 b −b
0 0 2a

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

z1
z2
z3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

S. Brunton, et al. PLoS ONE, 2016
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A Motivating Example of Lifting Linearization
qOnce linearized, the state equation can be applied to various nonlinear dynamics 

analysis and control design problems.
qConsider the above system with control input u.

d
dt

z1
z2
z3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
=

a 0 0
0 b −b
0 0 2a

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

z1
z2
z3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
+

0
1
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
u

qLet us apply Linear Quadratic Regulator (LQR) that optimizes the following cost 
functional.

J = z(t)TQz(t)+ u(t)T Ru(t)( )
0

∞

∫ dt

z(t) =
z1
z2
z3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

R = 1Q =

Q11 Q12 0

Q12 Q22 0

0 0 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

u(t) = u(t)
where
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dx1
dt

= ax1,
dx2
dt

= b(x2 − x1
2 )

qComparing the above LQR in the lifted space, let us consider a nonlinear optimal 
control for the original system.

qMinimize:

J = x(t)TQ0 x(t)+ u(t)
T Ru(t)( )

0

∞

∫ dt

Subject to 

R = 1Q0 =
Q11 Q12
Q12 Q22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

qSolving the above LQR problem, we can find an optimal state feedback law:

qNote that this feedback law is a nonlinear feedback since x12 is involved.

u(t) = −(k1,k2 ,k3)

z1
z2
z3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
= −(k1x1 + k2x2 + k3x1

2 )

qThis optimization is difficult to solve; no longer convex optimization; a numerical
solution may be at a local minimum, and the computation is more expensive.
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Koopman Operator
q The above case study is a special case of lifting linearization, where simple embedding 

of nonlinear terms leads to a complete linear model. General nonlinear dynamical 
systems cannot be represented by exact linear equations of finite order.

q However, an arbitrary, autonomous nonlinear dynamical system can be represented by 
a linear system of infinite order in a Hilbert space, thanks to Bernard Koopman.

PNAS

The Great Depression time
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Koopman Operator
q We start with a discrete-time dynamical system, while the theory applies to a 

continuous-time system. Consider a nonlinear autonomous (no input) system:

q Let be an observable, a scaler-valued function of state, which resembles 
output y. Here, g(x) can be a sensor measurement, a nonlinear function of state 
variables, such as z3 = x1

2 in the previous example, or one of the state variables.
q Collection of all such observables form a linear vector space. Koopman Operator, 

denoted by K, is a linear transformation on this vector space.

§ Here   denotes a composition operation. In this case, the observable function g
applies to F(x), which represents the state of the next time step.

§ The Koopman operator is linear. That means, K is a type of matrix, but infinite 
dimension.

§ The Koopman Operator applies to the collection of observations, a vector of infinite 
dimension, that is, a function g(x).

xt+1 = F(xt ) where x ∈ℜn , F :ℜn →ℜn continuous

g(x) :ℜn →ℜ

Kg(x) = g ! F(x)

!
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Schematic of Koopman Operator

State Space

Time Index t Time Index t +1

Evolution Operator

x ∈ℜn , F :ℜn →ℜn

K :H→ H

F(x1)x1 x2
x3 F(x2 )

F(x3)

Observable Space
(function space, Hilbert space)

(vector space, manifold)

g1
g2 g3 Koopman Operator

Finite-dimensional and Nonlinear

Infinite-dimensional and Linear

Kg1 Kg2 Kg3
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A Brute-force Method for 
Obtaining a Linear State Equation in a Lifted Space

xt+1 = axt + bxt
2 + csinπ xt

qGiven a nonlinear state equation, find nonlinear terms in F(x) and replace them by 
observables.

qThis allows us to rewrite the state equation as a linear equation with a set of 
observables. 

xt+1 = axt + bg1(xt )+ cg2 (xt )

qFormulate the transition of all the observables, , as linear functions of 
observables and state, . 

g1(xt+1),g2 (xt+1)
g1(xt ),g2 (xt ),xt

g1(xt+1) = k10xt + k11g1(xt )+ k12g2 (xt )
g2 (xt+1) = k20xt + k21g1(xt )+ k22g2 (xt )

Example:

g1(xt ) g2 (xt )
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A Brute-force Method (continued)
q Including other observables, write a set of augmented state equations, which 

represents “point-wise” transitions of state variables and observables. 

x1(t +1)

!
xn(t +1)

gn+1(t +1)

!
gm−n(t +1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

a11 ! a1,n a1,n+1 ! a1,m
" # " "
an,1 ! an,n "

an+1,1 ! "

" ! "
am,1 # # # # am,m

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

Am
! "###### $######

x1(t)

%
xn(t)

gn+1(t)

!
gm−n(t)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

§ Note that the observables are renumbered so that the matrix is m by m.
§ To differentiate time step t from the component of the state vector x, time is placed in (t).
§ The first n rows of the matrix are known, if all the nonlinear terms of F(x) are replaced by 

observables. The bottom (m-n) rows are unknown and to be tuned.
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A Brute-force Method (continued)

qDefine Zt , collect data for t = 0 through N., and set up 2 data matrices.

Zt =

x1(t)

!
xn(t)

gn+1(t)

!
gm−n(t)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

q The augmented state equation can be arranged for all the data collectively:

Z0|N−1 = Z0 ,Z1,!,ZN−1( )∈ℜm×N

Z1|N = Z1,Z2 ,!,ZN( )∈ℜm×N

Note that Z1|N is one time step ahead of Z0|N-1.

Z1|N = AmZ0|N−1
q The least squares solution is given by using the pseudo-inverse of Z0|N-1.

Am = Z1|NZ0|N−1
#
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Limitations to the Brute-force Method

q The above brute-force method is limited in several aspects.
§ The selection of observables are ad hoc.
§ Koopman’s theory does not say how to pick observables.
§ We do not know how many observables are required to better approximate the 

nonlinear dynamics.
q To answer these questions, let us better understand the Koopman Operator theory.
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Interpretation of Koopman Operator

q Take transpose of the previous expression, and equate it to the following matrix product

Z1|N = AmZ0|N−1 Z1|N
T = Z0|N−1

T Am
T

q Treating state variables, too, as observables, we can write the last expression as:

g1(1) ! gi (1) !
g1(2) ! gi (2) !
" ! " !

g1(N ) ! gi (N ) !

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

k11 k12 ! k1N
k21 k22 ! k2N
" ! # "
kN1 ! ! kNN

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

KN
! "#### $####

g1(0) % gi (0) %

g1(1) % gi (1) %

& % & %
g1(N −1) ! gi (N −1) !

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Z1|N
T = KmZ0|N−1

T

{gi (t) |1≤ t ≤ N}
q Interestingly, the ith column vector represents a trajectory of the ith observable; the left

trajectory:  , while the one on the right hand side is 
q This implies that the above linear transformation with matrix KN transforms a trajectory

to a trajectory, i.e. transformation of functions.

{gi (t) | 0 ≤ t ≤ N −1}

gi (x)gi (F(x))

gi (F(x)) = K gi (x)

îî
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Revisiting the Schematic of Koopman Operator

K :H→ H

Observable Space
(function space, Hilbert space)

g1
g2 g3 Koopman Operator

Infinite-dimensional and Linear

q Extending the trajectory of each observable to infinite time steps, and the number of 
observables to infinite, matrix KN becomes infinite dimensional. Let us denote the 
infinite-dimensional matrix by K, and the observable trajectories as

q We can write the Koopman Operator as a linear transformation of a function to a 
function.

gi (F(x)) = K gi (x), i = 1,2,!

g1(x),g2 (x),!

g1(F(x))
g2 (F(x))

g3(F(x))

Observable Space
(function space, Hilbert space)
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Comparison between Evolution Operator and Koopman Operator

q Koopman Operator

gi (1)
gi (2)
!

gi (N )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

k11 k12 ! k1N
k21 k22 ! k2N
" ! # "
kN1 ! ! kNN

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

KN
! "#### $####

gi (0)
gi (1)
%

gi (N −1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Z1|N
T = KNZ0|N−1

T

gi (x)gi (F(x))

g1(t +1)
!

gm(t +1)

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
=

a11 ! a1,m
" # "
am,1 ! am,m

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Am
! "### $###

g1(t)
%

gm(t)

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

q Evolution Operator Z1|N = AmZ0|N−1

K g = g ! F
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Koopman Eigenvalues and Eigenfunctions
qThe Koopman operator is a linear operator. Therefore, we can characterize it in terms 

of eigenvalues and eigenfunctions.
qLet lj be the jth eigenvalue and   be the corresponding eigenfunction of 

Koopman operator K.
ϕ j :ℜ

n →ℜ

Kϕ j (x) = λ jϕ j (x), j = 1,2,!

qConsider a vector-valued observable . If each of the p components of g(x)
lies in a function space spanned by the eigenfunctions, we can express g(x) as:

where  vector     is referred to as Koopman modes of the observable g(x) .

g :ℜn →ℜ p

g(x) = ϕ j (x)
j=1

∞

∑ v j

v j
qThe temporal behaviors of observables can be represented with the Koopman 

eigenvalues, eigen-functions, and modes.
g(xk ) = ϕ j (xk )

j=1

∞

∑ v j = ϕ j (F(xk−1))
j=1

∞

∑ v j = Kϕ j (xk−1)
j=1

∞

∑ v j = λ jϕ j (xk−1)
j=1

∞

∑ v j

=! = λ j
kϕ j (x0 )

j=1

∞

∑ v j
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Koopman Eigenvalues and Eigenfunctions

qThe temporal behaviors of observables can be represented with 
the Koopman eigenvalues, eigen-functions, and modes.

§ If one of the eigenvalues is greater than 1, that mode diverges; 
§ Those modes of |lj |<1 converge; and 
§ The one on the unit circle evolves on an attractor (limit cycle).

g(xk ) = λ j
kϕ j (x0 )

j=1

∞

∑ v j

Eigen-function:
Bases spanning the function space

Mode:
Representing the observable
w.r.t. eigen functions
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Snapshot of the 
flow field

The first Koopman mode = time average

Time signal
Time signal

Spectral Analysis

Koopman 
Modes in red

Jet in Cross-Flow

q Koopman Operator was 
first successfully applied 
to fluid mechanics.

q Observables are flow
velocities measured at
various points in space.

q Data are directly analyzed 
with Koopman operator 
with regard to 
eigenvalues, eigen 
functions, and modes of 
the linear transform.

C.W. Rowley, et al, “Spectral Analysis of Nonlinear Flows”, Journal of Fluid-mechanics, 2009
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Z1|m
T = KmZ0|m−1

T

q Back to the Finite-dimensional Matrix Km
q Suppose that we truncate the number of observables at m. 
q Collecting data for time 0 through m,

q Note that Z1|m is one time step ahead of Z0|m-1. Therefore, we can find

q Note that the Koopman operator is associated with a Companion matrix Cm.

Z0|m−1 = Z0 ,Z1,!,Zm−1( )∈ℜm×m

Z1|m = Z1,Z2 ,!,Zm( )∈ℜm×m
Zt =

g1(t)
!

gm(t)

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

g1(1) g2 (1) ! gm(1)
g1(2) g2 (2) ! gm(2)
" " " "

g1(m) g2 (m) ! gm(m)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

0 1 0 ! 0
" 0 1 # "
" # # 0
" " 0 1
c0 c1 c2 ! cm−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Cm
! "#### $####

g1(0) g2 (0) % gm(0)
g1(1) g2 (1) % gm(1)
& & & &

g1(m−1) g2 (m−1) ! gm(m−1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Km ↔ Cm

Computation of Koopman Eigenvalues and Modes from Data
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q In general, the last row is an approximation with some residual ri. 

gi (m) = c j
j=0

m−1

∑ gi ( j)+ ri , i = 1,!,m

g1(1) g2 (1) ! gm(1)
g1(2) g2 (2) ! gm(2)
" " " "

g1(m) g2 (m) ! gm(m)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

0 1 0 ! 0
" 0 1 # "
" # # 0
" " 0 1
c0 c1 c2 ! cm−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

g1(0) g2 (0) ! gm(0)
g1(1) g2 (1) ! gm(1)
" " " "

g1(m−1) g2 (m−1) ! gm(m−1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

q The squared residual        can be minimized by optimizing the coefficients ci. ri
2∑

(c1,!,cm ) = arg minc1,!,cm
gi (m)− c j

j=0

m−1

∑ gi ( j)
⎛

⎝⎜
⎞

⎠⎟i=1

m

∑ 2

q We compute the eigenvalues of the optimized Companion matrix to obtain 
approximate Koopman eigenvalues.

q If there exist a set of coefficients ci that satisfy the last row of the above relationship, 
the set of observables are complete, forming an Invariant Space. 
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Ritz Values and Ritz Vectors
q Let l and w be an eigenvalue and the corresponding eigen vector of the transpose 

of the optimized Companion matrix Cm.

Cm
Tw = λw

Z1|m
T = Z0|m−1

T Am
T Z1|m

T = KmZ0|m−1
T = CmZ0|m−1

T

q From the previous results,

and AmZ0|m−1 = Z0|m−1Cm
T

q Post-multiply w to the last expression yields 

AmZ0|m−1w = Z0|m−1Cm
Tw = λZ0|m−1w

q This implies that v = Z0|m-1 w is an eigenvector of matrix Am.
q Eigenvalue l is called a Ritz value and eigenvector v is a Ritz vector.
q Collectively,

Cm
T = T −1ΛT T −1 = (w1,!,wm ), Λ = diag.(λ1,!,λm )

V = (v1,!,vm ) = Z0|m−1T
−1

where
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Modal Decomposition of Nonlinear Systems
q The Ritz values and vectors and related data-driven methods, such as Dynamic 

Mode Decomposition (DMD) were developed primarily for linear systems. We now 
extend them to nonlinear systems.

q Suppose that we have observed a sequence of observables, 

q Let lj*and  vj*  be the empirical Ritz values and vectors for the data. Then we can 
show

g(x(t))∈ℜm , t = 0,1,2,!,m

g(x(t)) = (λ j
*

j=1

m

∑ )t v j*, t = 0,1,!,m−1

g(x(m)) = (λ j
*

j=1

m

∑ )mv j *+r

q Where r is the residual after optimization, and vj*  is scaled by the constant
values  jj(x(0)) in comparison to the previous expression. g(xk ) = λ j

kϕ j (x0 )
j=1

∞

∑ v j



Reflection
• Koopman Operator is weird, but powerful.
• Nonlinear autonomous systems can be linearized in an infinite

dimensional space.
• It acts on functions. It is infinite dimensional.
• Since it is linear, spectral analysis with eigenvalues and 

eigenfunctions is applicable to Koopman Operator.
• Data-driven methods are available for obtaining eigenvalues, eigen 

vectors, and modes directly from data.

• The exact linearization has been guaranteed only for autonomous 
systems (no control inputs) in infinite dimensional spaces.

• Practical methods will be discussed in the final lecture this 
Wednesday.
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