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What is Parametric Model? Why do we care?

Non-parametric model, 
e.g. Bode Plot, Impulse Response Model

L.T.I.
u(t) y(t)

y(t) = g(k)u(t − k)
k=0

∞

∑ = g(k)q−k
k=0

∞

∑
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! "# $#
u(t)

For example,

G(q) = 1+ 1
2
q−1 + 1
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q−2 +!
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q−1G(q) = 1
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4
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G(q)
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−1= G(q)−1

∴G(q) = 1

1− 1
2
q−1

q If we know this particular model structure, we 
need to identify only one parameter c. 

G(q) = 1
1+ cq−1

q In general, a system can be represented with a 
succinct model containing fewer parameters, if 
we know the model structure.

q For L.T.I. systems, model order, numbers of poles 
and zeros, etc. determine model structure.

G(q) =
b1q

−1 + b2q
−2 +!+ bnbq

−nb

1+ a1q
−1 + a2q

−2 +!+ anaq
−na

= B(q)
A(q)

q The problem is to identify parameters

from input-output data.

a1,a2,!,ana ,b1,b2,!,bnb
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Identifying Noise Dynamics

q In control design and estimation/prediction, it is often important to identify not only the dynamics 
from input to output, but also the noise dynamics; how noise and disturbance perturb the system; 
where noise comes in; whether the noise is colored and correlated.

q In system identification, various techniques are available for identifying both input-output 
dynamics and noise dynamics.

u(t) y(t)Dynamical
System

v(t)

Input Output

Noise
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Dynamic Modeling of Noise

q The fundamental difference between input-output dynamics and noise dynamics is that the input is 
accessible and even manipulatable for the former, but is not for the latter.

q Although not accessible, noise has statistical properties and some “structure”; 

q To capture these properties, we consider the following noise dynamic model.

H(q)
e(t) v(t) NoiseUncorrelated 

“White” noise
Colored−π π

Φe(ω ) λ

q We assume that noise is originated in a completely uncorrelated “White” stochastic process e(t) with 
covariance l, and that it goes through a transfer function H(q), resulting in colored noise v(t).

q White noise e(t) is completely unpredictable, while colored noise v(t) is to some extent predictable if we 
know H(q). We aim to identify this noise transfer function H(q) representing the “structure” or the “channel” 
of the noise through which its unpredictable input e(t) is transmitted, resulting in the colored noise.

Noise is originated in white (totally uncorrelated) exogenous input. 
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Various Model Structures of Stochastic LTI Systems
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q Depending on how input and output are connected and how noise comes into the system, various model 
structures have been used. In the following A(q), B(q), C(q), … represent polynomials of q.

Auto-Regressive model with eXogenous input Auto-Regressive Moving Average model with 
eXogenous input

A(q) = 1+ a1q
−1 +!+ anaq

−na ,

B(q) = b1q
−1 +!+ bnbq

−nb
C(q) = 1+ c1q

−1 +!+ cncq
−nc
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Various Model Structures of Stochastic LTI Systems
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u(t) y(t)

e(t) Box-Jenkins Model

B(q)
u(t) y(t)

FIR Model

q Depending on how input and output are connected and how noise comes into the system, various model 
structures have been used. In the following A(q), B(q), C(q), … represent polynomials of q.

Auto-Regressive model with eXogenous input
Auto-Regressive Moving Average model with 
eXogenous input

C(q)
D(q)

B(q)
A(q)

C(q)
D(q)

Finite Impulse Response model
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Estimating Model Parameters from Input-Output Data

q How can we determine parameters ?

q We use the Prediction Error Method first.

θ = (a1,!,ana ,b1,!,bnb )
T

Real System

Model: q

u(t)

y(t)

ŷ(t |θ )

Noise

Prediction Error

q Identification Data

q Apply Least Squares Estimate

θ̂N = argmin
θ

1
N

( y(t)−∑ ŷ(t |θ ))2

D ={(u(t), y(t)) | t = 1,2,!,N}
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Auto-Regressive model with eXogenous input (ARX)

q In ARX model, White noise e(t) directly acts along 
the forward path of the system.

q A(q) and B(q) are polynomials given by

A(q) = 1+ a1q
−1 +!+ anaq

−na ,

B(q) = b1q
−1 +!+ bnbq

−nb

q Output y(t) can be written as follows,

y(t) = B(q)
A(q)

u(t)+ 1
A(q)

e(t), A(q)y(t) = B(q)u(t)+ e(t)

y(t) = −a1y(t −1)−!− ana y(t − na )+ b1u(t −1)+!+ bnbu(t − nb)+ e(t)
q Therefore, the output can be predicted by using estimated parameters

ŷ(t) = −â1y(t −1)−!− âna y(t − na )+ b̂1u(t −1)+!+ b̂nbu(t − nb)

White noise

E[e(t)] = 0Zero mean

q Note that the unknown parameters are linearly involved in the above expression. 
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Derivation and Note

y(t) = B(q)
A(q)

u(t)+ 1
A(q)

e(t), A(q)y(t) = B(q)u(t)+ e(t)

y(t) = −a1y(t −1)−!− ana y(t − na )+ b1u(t −1)+!+ bnbu(t − nb)+ e(t)

A(q)y(t) = (1+ a1q
−1)y(t)

= y(t)+ a1q
−1y(t) = y(t)+ a1y(t −1)

Example:

Auto-Regressive Part Moving Average Part Exogenous Input

ARX Model

Clarification:

In deterministic system

identification, where e(t) 

is dropped, the system 

shown below is called 

ARMA (auto-regressive, 

moving average) model.
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Auto-Regressive model with eXogenous input (ARX)

ŷ(t) = −â1y(t −1)−!− âna y(t − na )+ b̂1u(t −1)+!+ b̂nbu(t − nb)
q This is a linear regression with regressor and parameter vectors defined by

ϕ(t) =

− y(t −1)
!

− y(t − na )

u(t −1)
!

u(t − nb)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

, θ =

a1
!
ana
b1
!
bnb

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

ŷ(t |θ ) = θ̂Tϕ(t)

q This is a standard least squares estimate problem. If the regressor data are persistently exciting, it has a 
unique solution.

θ̂N = argmin
θ

1
N

( y(t)−∑ ŷ(t |θ ))2 = ϕ(t)ϕT (t)
t=t*

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

ϕ(t)y(t)
t=t*

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q Note that due to an edge effect, the data usable for the above calculation starts at .t*= max[na ,nb]
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y(t) = −a1y(t −1)−!− ana y(t − na )+ b1u(t −1)+!+ bnbu(t − nb)+ e(t)

Discussion

q In the above ARX model, the output prediction was obtained simply by taking expectation of the true system:

E[y(t)] = E[−a1y(t −1)−!− ana y(t − na )+ b1u(t −1)+!+ bnbu(t − nb)]+ E[e(t)]

= −â1y(t −1)−!− âna y(t − na )+ b̂1u(t −1)+!+ b̂nbu(t − nb) = θ̂
Tϕ(t)

True System:

q This is a special case where the white noise e(t) alone is added to the output. In general, this is not the case.  
For example,

q Simply averaging out the e(t) and e(t-1) terms does not provide the best prediction:

q As shown in the following, the term e(t-1) is predictable after observing y(t-1) and knowing u(t-1). In the 
Prediction Error Method we must make the best estimate to evaluate the parameters.

y(t) = −a1y(t −1)+ b1u(t −1)+ e(t)+ c1e(t −1)

ŷ(t |θ ) ≠ −â1y(t −1)+ b̂1u(t −1)

ŷ(t |θ )
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Real System

Model: q

u(t)

y(t)

ŷ(t |θ )

Prediction Error

Let us examine the last statement.

In the Prediction Error Method we must make the best estimate to evaluate the 
parameters.

ŷ(t |θ )

q If the prediction               is not an optimal estimate for a given parameter q , the 
prediction error is due to the inappropriate prediction rather than the inaccuracy of the 
parameter q .

q If the prediction is the best, the error is largely due to the error of the parameter values.

q The estimate of parameters may be biased, if we ignore the noise, which is colored.

ŷ(t |θ )

v(t)
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Noise Dynamics Transfer Function

G(q)
u(t) y(t)

e(t)

H (q)
v(t)

q Consider a general case where input u(t) goes through a forward path transfer 
function G(q) and White noise e(t) through noise dynamics transfer function 
H(q). This model subsumes all the model structures discussed previously.

q White noise e(t) has variance l;

q In the block diagram, v(t) represents colored noise:

v(t) = H(q)e(t)

E[e(t)e(s)] =
λ; t = s
0; t ≠ s

⎧
⎨
⎪

⎩⎪

q Without loss of generality, we can assume that the DC gain of the transfer function H(q) is unity. Because 
the variance of the White noise represents the scale (magnitude) of the noise strength, we can set the DC 
gain of H(q) to be unity. 

q Transfer function with a unit DC gain* is called monic.

* The coefficient of the highest order term is 1 in a polynomial:  H (q) = 1+ c1q
−1 + c2q

−2 +!
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Predictor

G(q)
u(t) y(t)

e(t)

H (q)
v(t)

q In an attempt to find the optimal output prediction               , 
consider to utilize the observation of prior output y(t-1) and 
input u(t-1), 

q The output time sequence of the system is given by

q Since we know y(t-1) and u(t-1), we can estimate e(t-1) from 
the second equation above.

y(t) = G(q)u(t)+ H (q)e(t),
y(t −1) = G(q)u(t −1)+ H (q)e(t −1),
!

e(t −1) = y(t −1)−G(q)u(t −1)
H (q)

In general, e(t − k) = y(t − k)−G(q)u(t − k)
H (q)

ŷ(t |θ )
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Predictor

e(t − k) = y(t − k)−G(q)u(t − k)
H (q)

q Let us express the noise transfer function H(q) in impulse response form:

H (q) = 1+ h(1)q−1 + h(2)q−2 +!
Note that H(q) is monic.

q The colored noise v(t) is then expressed as

v(t) = H (q)e(t) = e(t)+ h(1)e(t −1)+ h(2)e(t − 2)+!

Recall that these terms can be predicted:

q Define m(t-1) to be the sum of all these predictable terms in v(t),

m(t −1) ! h(1)e(t −1)+ h(2)e(t − 2)+"
= h(1)e(t −1)+ h(2)e(t − 2)+"+ e(t)− e(t)
= H (q)e(t)− e(t) = (H (q)−1)e(t)

Since H(q) is monic, this does not include e(t), but e(t-1), e(t-2),…
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Predictor

q Estimation of the colored noise v(t):

v̂(t) = E[v(t)] = E[e(t)+m(t −1)] = m(t −1) = (H (q)−1)e(t)

= (H (q)−1)H (q)−1( y(t)−G(q)u(t)) = (1− H (q)−1)( y(t)−G(q)u(t))
Note that is used in the above computation. 

q We need to examine whether H-1 is monic. Let us write the inverse of H(q) as

H (q)e(t) = y(t)−G(q)u(t)

H (q)−1 = !h(0)+ !h(1)q−1 + !h(2)q−2 +"
H (q)H (q)−1 = 1

1⋅ !h(0)+ ( !h(1)+ h(1) !h(0))q−1 + (heigher-order polynomial of q−1) = 1

∴ !h(0) = 1; monic

v̂(t) = (1− H (q)−1)( y(t)−G(q)u(t)) = v̂( y(t −1), y(t − 2),!,u(t −1),!)
q The predicted colored noise is a function of all known variables. 

This does not include y(t), u(t), but older output and input variables.
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Predictor
q Estimation of the output:

ŷ(t | t −1) = G(q)u(t)+ v̂(t) = G(q)u(t)+ (1− H (q)−1)( y(t)−G(q)u(t))

= G(q)u(t)−G(q)u(t)+ H (q)−1G(q)u(t)+ (1− H (q)−1)y(t)

∴ ŷ(t | t −1) = H (q)−1G(q)u(t)+ (1− H (q)−1)y(t)
q Let us examine whether this is the best estimate we can make based on the model. 

To this end, we evaluate the prediction error:
y(t)− ŷ(t | t −1) = y(t)− H (q)−1G(q)u(t)− (1− H (q)−1)y(t)

= y(t)− y(t)− H (q)−1G(q)u(t)+ H (q)−1 y(t)

= H (q)−1( y(t)−G(q)u(t)) = H (q)−1H (q)e(t) = e(t)
The prediction error is nothing but the White noise, which is completely unpredictable. We have used 
all the predictable information in . ŷ(t | t −1)

ŷ(t | t −1) = H (q)−1G(q)u(t)+ (1− H (q)−1)y(t)
q This predictor, called One-Step Ahead Predictor, is the optimal.

q Punch line: is the optimal prediction as far as the model structure and parameters are correct. 
Prediction error higher than e(t) is due to the model parameters error, if the model structure is correct.

ŷ(t | t −1)

y = Gu + He
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Example
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1
A(q)

B(q)
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ARMAX

Identification of ARMAX Model:
Auto-Regressive Moving Average with eXogenous input 

q The output of an ARMAX system is given by

y(t) = B(q)
A(q)

u(t)+ C(q)
A(q)

e(t)

where C(q) = 1+ c1q
−1 +!+ cncq

−nc

q The optimal predictor is given by

ŷ(t | t −1) = H (q)−1G(q)u(t)+ (1− H (q)−1)y(t)

= A(q)
C(q)

B(q)
A(q)

u(t)+ (1− A(q)
C(q)

)y(t)

ŷ(t | t −1) = B(q)
C(q)

u(t)+ (1− A(q)
C(q)

)y(t)
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ŷ(t | t −1) = B(q)
C(q)

u(t)+ (1− A(q)
C(q)

)y(t)
ŷ(t | t −1)

Model: Optimal Predictor

Prediction
Error

Prediction Error Method

q Prediction error comes from the estimated parameters involved in polynomials A(q), B(q), and C(q).
q This allows us to estimate not only the input-output forward dynamics but also the noise dynamics.
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Identification of ARMAX Model:
Auto-Regressive Moving Average with eXogenous input 

q To emphasize that the predictor is dependent on 
parameters, let us write it as 

q Multiplying C(q) to both sides, 

ŷ(t |θ )

C(q) ŷ(t |θ ) = B(q)u(t)+ (C(q)− A(q))y(t)
ŷ(t |θ ) = (1−C(q)) ŷ(t |θ )+ B(q)u(t)+ (C(q)− A(q))y(t)

In this term, parameters are not linearly involved, since is dependent on the parameters.ŷ(t |θ )

ŷ(t |θ ) = B(q)
C(q)

u(t)+ (1− A(q)
C(q)

)y(t)
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Identification of ARMAX Model:
Auto-Regressive Moving Average with eXogenous input 

q Parameters are not linearly involved in the predictor , therefore it cannot be written in linear regression 
form.

q Instead, it can be written as a Pseudo-Linear Regression.

ŷ(t |θ ) = −a1y(t −1)−!− ana y(t − na )+ b1u(t −1)+!+ bnbu(t − nb)

+ c1ε(t −1|θ )+!+ cncε(t − nc |θ )

ŷ(t |θ )
ŷ(t |θ ) ≠ θTϕ(t)

ŷ(t |θ ) = (1−C(q)) ŷ(t |θ )+ B(q)u(t)+ (C(q)−1)y(t)+ (1− A(q))y(t)
= (1− A(q))y(t)+ B(q)u(t)+ (C(q)−1)( y(t)− ŷ(t |θ ))

ε(t |θ ) ! y(t)− ŷ(t |θ )q Replacing the last term by we can write:

q Defining parameter and regressor vectors as:
θ = [a1,!,ana ,b1,!,bnb ,c1,!,cnc ]

T

ϕ(t |θ ) = [− y(t −1),−!,− y(t − na ),u(t −1),!,u(t − nb),ε(t −1|θ ),!,ε(t − nc |θ )]
T

We can obtain the predictor in Pseudo-Linear Regression form.

ŷ(t |θ ) = θTϕ(t |θ )
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Extended Least Squares Estimate
q With the pseudo-linear regression the Prediction Error Method becomes a nonlinear optimization problem, 

where the standard Least Squares Estimate cannot be applied.

θ̂N = argmin
θ

1
N

( y(t)−∑ ŷ(t |θ ))2 ŷ(t |θ ) = θTϕ(t |θ )where

q The following Extended Least Squares Estimate can be used for obtaining the parameters that minimize the 
squared error index.

Step 1 Initially assuming that C(q) = 1, solve the ARX problem with the same order of A(q) and B(q). 
This will give an initial estimate θ = (a1,!,ana ,b1,!,bnb )

T ∈ℜ(na+nb )×1

Step 2 Set , and compute: θ (0) = (θ T ,0,!,0)T ∈ℜ(na+nb+nc )×1 ε(t −1|θ (0) ),!,ε(t − nc |θ
(0) )

Step 3 Repeat the following loop:
For i = 1 to M

Construct 

Compute LSE

Compute
end

ϕ(t |θ (i−1) ), t = 1,!,N

θ̂ (i) = ϕ(t |θ̂ (i−1) )ϕT (t |θ̂ (i−1) )
t=t*

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

ϕ(t |θ̂ (i−1) )y(t)
t=t*

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε(t −1|θ (i) ),!,ε(t − nc |θ
(i) )

q Unlike LSE, this is not a convex optimization problem. It may face a local minima problem.
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Reflection

qParametric linear system identification;

qModel structure; ARX, ARMAX, etc.

qARX à Linear regression

qNoise dynamics:

qPredictor

qARMAX à Pseudo-linear regression

qExtended Least Squares Estimate

v(t) = H (q)e(t)

ŷ(t | t −1) = H (q)−1G(q)u(t)+ (1− H (q)−1)y(t)


