2.160 Identification, Estimation, and Learning
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And Mapping (SLAM)
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Clarification of Linearized KF and Extended KF

U Linearize the nonlinear state equation around a nominal trajectory, which is a prescribed time
function. The resultant system is a Linear Time-Varying system to which Kalman Filter 1s
applicable.

X Actual Trajectory
U The nominal trajectory must satisfy the original

nonlinear state equation. /
. \}./
x*= f(x*u,t) x=x*+Ax

X*()  Nominal Trajectory

U Consider deviation from the nominal trajectory:

time
Ax = 9f Ax + w(t ‘
- ox w(t) X Actual Trajectory
X * 7’ - S< /
/ Se
[ As the actual trajectory significantly deviates from -7 ~ éx
the nominal trajectory, the linearized model becomes /\ S~
erroneous, leading to possible divergence of * -
oneo gtop : o) N7

estimation. Nominal Trajectory

time



7.3 Extended Kalman Filter

1 Extended Kalman Filter is a significant improvement in two major aspects:

1) The Jacobian matrices are evaluated not at nominal

state x*(¢) but at an estimated state x(7)
d
F(t)= —f
x50y
oh
H(t)=—-
I*z
time
2) State propagation and update use the full nonlinear state equation and measurement equation.
¥ = fEO.0+ KOO -hENO.0]  x=F()i =H(DOX(0)]
™~
Original Nonlinear equations K()=P(O)H ()R (?)

O Estimated state x(#)and predicted output }(¢) are in the original coordinate system, not the
deviation from a reference. ;



Unscented Kalman Filter

1 No linearization and Jacobians are involved.
 Propagation and update are all in the original coordinate
system.

U Propagate the Sigma points through the state equation, noting
that the process noise is zero mean.

0
~tl|t | —f(’xt 1>t—1)+y/1» i=0,--,2n

U For these (2n+1) Sigma points, the weighted mean is
computed

A i
— ~n+1*
t|t 1,sample ZW t|t 1 xt|t_1 = f X

1 Covariance and state update, too, are in the global coordinate

system. -

W%, —%

~1 A T
— -1
te— 1 t|t l,sample) xt|t—l xt|t—1,sample) * Qt—l xt|t—1,sample
=0

tt—1 Sample

A A A _ 1 Weighted mean
xt xt|t—1,sample + Kt[y t y t,sample] K, = Rc P



Bayes Filter

1. Initial Conditions: g,(x,) set¢=1;
2. Belief Propagation:

gt|t—1(xt) = J‘:o fW (xt B f(xt—l’ut—l)) gt—l(xt—l)dxt—l

3. Assimilate V,and update the a priori belief

Limitation to UKF

Approximate to Gaussian

v /
.
.
.
.
.
.

Nonlinear map

g, (x)=nf,(y,—h(x,,0))g,_,(x,)

4. Return g,(x,) .Setr=¢+1and repeat.

Chapman-Kolmogorov Eq.

Multi-Hypothesis Estimate

Po(x, [ x,_;5%,_)

- g,(x))

No longer Gaussian

Modes
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https://gaia.adage.com/images/bin/image/x-
large/241402914.jpg

$6T market

http://moovafrica.com/new
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content/uploads/2017/08/se
1f-driving-car-1.jpg

Late 1980’s Nav Lab, CMU Robotics Institute,
Chuck Thorpe et al.



Simultaneous

Localization and
Mapping (SLAM)

John Leonard

Simultaneous state (location) and parameter (involved in the map)
estimation

J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by tracking geometric
beacons. IEEE Trans. Robotics and Automation, 7(3):376-382, June 1991.



Simultaneous

[L.ocalization : estimating the position and orientation of a vehicle

and Mapping : generating and updating a map

L ocalization

Synergistic
effect

Mapping

A more accurate map can localize the robot more accurately.
More accurate localization can generate a more accurate map.



SLAM

[.ocalization

Synergistic
effect

Mapping \

Augment the state variables by including feature parameters, e.g. line parameters, to be
estimated. There 1s no fundamental difference between state estimate and parameter estimate.

If n features (line parameters) are in the map, the state variables are:

.................................................................................................................... T
Xr:( X, y 0 o rn oa , 71, )
Robot location Parameters of Map

If the environment 1s static, these features are constant but unknown. 10



Outline

SLAM formulation
— Landmark estimation via augmentation of state variables
Vehicle localization based on Kalman Filter
— Vehicle kinematics
— State equation and process noise
— Map representation (a simple example)
— Range data processing: line/wall detection
— Measurement prediction
— Matching: data association
— State update
Introduction to Particle Filter
Rao-Blackwell Filter

11



Vehicle kinematics

1
V= E(ASF +As))

1
AH — Z(ASF — ASZ)

Ax=vcos(9+%A9) Ay:vsin(0+%A0)

12



\
xt+1
Yin
Ht+1 )

4291

Deterministic State Equation

( 1
6 +—-A0O
\ v, cos(6, > )
. 1
+| v, si(6 + EAH’)
y A,

\
\

\

J

= f(x,y,6,As ,As))

¥

X1 = Atxt T Btut '

. 1 . o e
0 —v sm(Q LA Qt) This state transition

1
1 v .cos(6 + EAQ)

0 1

matrix subsumes inputs:

1
v, = E(AS” +As,)
]

AO = Z(Asr —As)

xt+1 = Al‘ (ul‘)xt

13



Process Noise Dynamics x = At(ut)xt + Gtwt

+

r

As

[
1 The wheel displacement (path length) is uncertain due to slip, roughness of the ground,

feedback control error, etc. We model the uncertainty as additive noise with covariance 2q.
[ The variance increases in proportion to the distance traveled.

Asr=A§r+wr, Asl=A§l+wZ ( \

kl"

ASF‘ 0 Wz

2. =cov(As ,As )= w,
S ’ 0 kl‘ASl| \ . 14



Process Noise Dynamics (w )

(

1

1 Wi
v, cos(6, + EAH’) \ J

. 1
v, sin(6, +§A6t) = f(x,y,0,As ,As))

A6 U

) xt+1 = At(ut)xt T Gtwt

1
AO = Z(AS” —As))

As 1 | | As

lcos(é? +—A0 )——-sin(@ +—-A0) —cos(f +—Ab )+—sin(0 +1A0)
2 2 Y 2 P2 o2 to2 o2p P2

1 1 1 As

lsin(6? +1A9)+£cos(9 +—A60) —sin( +—AO)——-cos(f +1A9)
2 2 v 2 P2 o2 b2 " o2p 2

1

1
b b

15



State Propagation P =APA'

tHle T

Ermor Fropagation In Odometry Emor Propagation in Odometry
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The vehicle location uncertainty increases as the vehicle travels.
The uncertainty perpendicular to the movement grows more
rapidly than the longitudinal direction.

As 1t goes around a circle, the principal axis of the uncertainty
ellipse 1s no longer perpendicular to the direction of movement.



Map Representation

A simple example. We consider only Line representation.

—

(b)

[ The state of the art is 3D map building with locally tunable resolution based on
point-cloud data obtained from 3D scanners, e.g. 3D LIDAR, depth cameras.
1 Image processing is heavily involved. Kalman Filter is used for integrating RGB

camera image with LIDAR depth information. "



Range Sensors
LIght Detection And Ranglng (LIDAR)

LIDAR 1s in Polar coordinate.

PN 0

18



Representing a line 1in Polar Coordinate

A straight line with parameters » and . ¢ . Least Squares Estimate
@
CoS X .
X =Xxcosa+ ysinx =r gy

( Y )( sin o ] d x;= (pir 03
 If a LIDAR detects a point on the line: X = pcosf, y = psinf

pcos(0—a)—r=0
1 Suppose that the LIDAR detects N points: ( . ] ®

SIn

D= {(pi,el-) |l: 199N}

[ The line parameters, » and ¢, that minimizes the total squared distances
between the sample points and the line are given by

N
(a°,r°)=argmin Y d*  where d =p cos(6,—a)—r
Gl

19



Considering the LIDAR noise covariance
we use the weighted squared distance to minimize.

N
. 1
(a’,r’)= argmin E ?df
|

o becomes larger as the
distance gets longer.
Depth measurement 1s
more 1naccurate.

LIDAR sensor
Noise covariance

20



Observation Error Covariance

~ U

N
. 1
(a’,r’)= argmmZ—zdf

i=z1 O

) 1 Due to the LIDAR noise,

the estimated line
parameters have
variability.

 The uncertainty in estimating the i-th line parameters 1s quantified with

error covariance

Cov(a,7) = R’ =

oot

ar,t

or,t

rr,t

J

1 Here, we treat a and r as
measurements, 1.€. sensor outputs.

21



Measurement Prediction

Based on the stored map and the a priori estimate of the vehicle
location X f-1> the measurement prediction of the expected
features are generated.

Jj-th wall

(A )
A atj
Y, = .
7"] 1
N

Time t-1

= h(x

) Coordinate transformation based on X

tt— 1’ map > map tjt—1

The j-th line parameters stored in a map >



Point Cloud

i

Identified Lines

line i

Flow of Image Data Processing

o — ¥ space

)y A

line 7

-7C (L ’. O

Line parameter distribution and

Estimation error covariance

23




Data Association

] Matching between predicted line parameters (features) and the measured line

parameters: Which line matches which line. R

# - .

Measured Predicted odet space L/"/‘*v;
( l \ T ( A ] \ T !'-W(I'L,’{' SPaCe |

l.j at at - ..'\'r': .r;h'.r.'a h!!
Ayt — - Wall vwas not ob-
i A j oy
r r

(J Mahalanobis Distance
AI(P) (&) <g°
Find i and j that are within the distance of g.

Cmaich i
I‘-.

T o o 0 T oo

] Here the distance is weighted by the inverse of the
innovation covariance.

24
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State Update: Kalman filter estimate of the new vehicle location

a prior1 estimate of vehicle location

N

r 1 xt|t—1’ tt—1
Measurement y, ||
l( = l_\",|
N
o r a, r o %
1 1 2 2 n -

the mnovation gained by
the measurement

T
K(y,-5), P=HP, H +R

tt-1

,
,/{;
-

Update estimate of the vehicle location

X, P s



K, =P, H'[HP

-1

Initial Error Covariance

P,=F,i=1

y

H' +R "

Compute Kalman Gain

K, =P, H[HP, H +R]'

t -1

A A
X, =X r|r -1
Initial State
Estimate
Y. Measurement

Update State Estimate
with new measurement

:

Update error covariance

P=(-KH)P

1|1

P .. =APA" + GOG'

\/
[ 1+1

On-Line or Off-Line

x, =4 x

tle-1 t-1""1-1

/yt

X

A ~J
¢ - xrlr—l + K,(}”[ - yt‘ 1

ﬁ I:I-I—l

State Estimate X,

Real-Time

= h(x

TR—I

It

t|t 1’

Ay,

7 J
map " map

26



SLAM

Localization
Synergistic
effect |
Mapping \

L Augment the state variables by including the feature parameters, e.g. line parameters,
to be estimated.

U If » features (line parameters) are in the map, the state variables are:

T
Xr:( X,V Qt o n o, r, - o rn)

 If the environment is static, these features are constant but unknown.
[ As the features are better known, the updated feature values are used for predicting

Y R Y Y-
sensor outputs: )/ = h(xm_l,OC ) 27



Kalman Filter Based SLAM

Generally, fast computation

Assume Gaussian noise: In reality, measurement noise and process
noise are non-Gaussian.

Extended Kalman Filter 1s limited in dealing with rapidly changing
nonlinearity.

SLAM 1s limited to slowly changing environment. It is still a future
1ssue to deal with dynamically changing environment.

Parametric representation of 3D environment 1s often a challenge.

28
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The map is revised
and becomes more
accurate, as the

robot moves around
and more 1mages
are obtained.
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SKYLLA

TECHNOLOGIES
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Context-Oriented Project #2
SLAM
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Part 1: Pedestrian Tracking

Lidar Pedestrian

x(1)

\‘9 (y(t)J
i

i I‘.—I"

a) Download the first data file, LIDAR-Pedestrian-1.
Read the file format instruction. Construct an
Extended Kalman Filter to estimate the trajectory of a
single pedestrian in the data file.

b) For the same data, implement Unscented Kalman
Filter and discuss the difference.

c) Download the second data file, LIDAR-Pedestrian-
2, and read the data format instruction. In this file,
two pedestrians are walking in different directions.
The two pedestrians get close to each other, and the
LIDAR cannot detect one pedestrian behind the other
for some time. Namely, occlusion occurs in the data.
How can you handle this type of situation, where data
are not available for several time frames? 33



Part 2: Robot Localization

I
1 Vehicle Trajectory
I

d)

g)

kl"

As| 0

QO =(Z;=)cov(As ,As,)=
0 klAs)

Obtain the predicted output measurement for the initial step (¢ = 1):

o’

el

1

for a set of walls, j = 1, 2..., captured by the LIDAR at the initial pose.

J

ol S e /i
yl = _yl (x1|0’amap’rmap) >

Segment the LIDAR data into the individual walls by hand, and estimate the wall
(feature) parameters, « and ». Obtain the initial measurement yf for all the
viewable walls at the initial pose.

Associate the predicted output j7 with measured output y;; which i corresponds
to which j. You can manually do this or use a distance measure.

Obtain the measurement error covariance R, and form the Kalman gain K .

Update the robot pose and repeat the process several times. Show the trajectory of
the robot in the world coordinates.
34



SLLAM beyond the standard Kalman Filter

Dealing with non-Gaussian noise properties;

Dealing with nonlinear process dynamics without
linearization;

Bayes filter — Nonlinear dynamics, non-Gaussian noise

Particle Filter — Monte Carlo implementation of Bayes
Filter

Rao-Blackwell Filter — Combine Kalman Filter and Particle
Filter

35



