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The Flow of the Discrete Kalman Filter Algorithm

Time

yty1 yt−1y2

Observations up to 
and including t - 1

State estimate

x̂t−1 ⇒ x̂t|t−1

⇑
ŷt
⇑

⇓ Prediction Error
yt − ŷt
⇓
x̂t|t−1

⇓
x̂t

Correct⇓

Expected state transition 
based on the state equation, 
e.g. open-loop simulation

Predicted 
output

a priori 
state a posteriori 

state

+
_

Assimilate a new 
observation

Propagation
Update

Recap
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Recursive Formula of Discrete-Time Kalman Filter

x0

Pt+1|t = AtPt At
T +GtQtGt

T

Pt = (I − KtHt )Pt|t−1

t = t +1

Covariance Propagation

Covariance Update

P1|0

Kt = Pt|t−1Ht
T (HtPt|t−1Ht

T + Rt )
−1

x̂t = x̂t|t−1 + Kt[yt − ŷt ]

x̂t|t−1 = At−1x̂t−1
ŷt = Ht x̂t|t−1 = Ht At x̂t−1

State Propagation

State Update

Initial Conditions

t = t +1
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On the Kalman Gain

qPost-multiplying  

Pt = (I − KtHt )Pt|t−1

qSubstituting this into (*)

Pt

Kt = Pt|t−1Ht
T (HtPt|t−1Ht

T + Rt )
−1

HtPt|t−1Ht
T + Rt

Kt (HtPt|t−1Ht
T + Rt ) = Pt|t−1Ht

T

qFrom the covariance update law 

KtHtPt|t−1 = Pt|t−1 − Pt

(*)

(Pt|t−1 − Pt )Ht
T + KtRt = Pt|t−1Ht

T → Pt|t−1Ht
T − PtHt

T + KtRt = Pt|t−1Ht
T

∴Kt = PtHt
T Rt

−1

qThe Kalman gain is proportional to the inverse of the measurement noise covariance 
and the posteriori prediction error covariance       .

R−1
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Kalman Filter: Continuous v.s. Discrete Time

Continuous Time Discrete Time

Linear Time-Varying System

xt+1 = Atxt + Btut +Gtwt
yt = Htxt + vt

dx
dt

= F(t)x(t)+G(t)w(t)

y(t) = H (t)x(t)+ v(t)

Pt+1|t = AtPt At
T +GtQtGt

T

Pt = (I − KtHt )Pt|t−1

x̂t = At−1x̂t−1 + Kt[yt − ŷt ]
d
dt
x̂(t) = F(t)x̂(t)+ K(t)[y(t)− ŷ(t)]

The Riccati Differential Equation

State Equation

Measurement 
Equation

State update 
& propagation

Covariance update 
& propagation

!x ≅
xt+1 − xt

Δt Kt = PtHt
T Rt

−1
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xt+1 − xt
Δt

≅ F(t)x(t)+G(t)w(t)

Converting system representation from discrete time to continuous time

xt+1 = (I + F(t)Δt)xt +G(t)Δt w(t)

At Gt wtModeling of noise

vt

yt
At

wt Gt HtTime Delay
xt+1 xt

v(t)

y(t)
A(t)

w(t)
G(t) H (t)

!x(t) x(t)
∫

Integration

No Integration

qComparing the continuous time and 
discrete time systems, we find that 
the process noise going through the 
continuous time system is integrated, 
while the one through the discrete 
time system is not. Therefore,

qOn the other hand, there is no such 
difference for measurement noise: vt
is merely the time average of v(t).

wt = w
t−Δt

t
∫ (τ )dτ = w(t) ⋅ Δt

vt =
1
Δt

v
t−Δt

t
∫ (τ )dτ = v (t)

Continuous

Discrete

State Equation
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Noise Covariance in Discrete Time and Continuous Time Representation
qMeasurement noise in discrete time vt is the time average of continuous time noise v(t) over 

sampling interval Dt.

q Based on this, the covariance of measurement noise is related to the one in continuous time 
as:

vt =
1
Δt

v
t−Δt

t
∫ (τ )dτ = v (t)

Rt = E[vtvt
T ] = E v

t−Δt

t
∫ (τ )vT (τ ')dτ dτ ' 1

Δt2∫
⎡

⎣
⎢

⎤

⎦
⎥

= E[v(τ )vT (τ ')]
R(τ )δ (τ−τ ')
! "## $##t−Δt

t
∫ dτ '

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∫ dτ 1

Δt2
= R(τ )dτ

t−Δt

t
∫

1
Δt2

= R(t)Δt 1
Δt2

= R(t) 1
Δt

qSimilarly, we can find the relationship between the process noise covariance in discrete 
time and the one in continuous time.

Qt = E[wtwt
T ] ≅ Q(t) ⋅ Δt Q(t) = 1

Δt
Q(τ )dτ

t−Δt

t
∫where

Dirac’s delta function

0 Area = 1

δ (t)

t
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Combining the Covariance Propagation Law with the Covariance Update Law

qThe correspondence between discrete time terms and the continuous time terms can be 
summarized as follows.

qTherefore, the Kalman gain is expressed as:

qCovariance propagation and covariance update laws can be combined:

At = I + F(t) ⋅ Δt, Ht = H (t), Rt = R(t)
1
Δt
,Qt = Q(t) ⋅ Δt, Pt = P(t)

Kt = PtHt
T Rt

−1 = PtHt
T R−1(t) ⋅ Δt = K(t)Δt where K(t) = P(t)HT (t)R−1(t)

Pt+1|t = AtPt At
T +GtQtGt

T = At (I − KtHt )Pt|t−1At
T +GtQtGt

T
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Combining the Covariance Propagation Law with the Covariance Update Law

qThe correspondence between discrete time terms and the continuous time terms can be 
summarized as follows.

qTherefore, the Kalman gain is expressed as:

qCovariance propagation and covariance update laws can be combined:

qUsing the above relationships, we can convert the combined covariance propagation and 
update law in discrete-time into:

At = I + F(t) ⋅ Δt, Ht = H (t), Rt = R(t)
1
Δt
,Qt = Q(t) ⋅ Δt, Pt = P(t)

Kt = PtHt
T Rt

−1 = PtHt
T R−1(t) ⋅ Δt = K(t)Δt where K(t) = P(t)HT (t)R−1(t)

Pt+1|t = AtPt At
T +GtQtGt

T = At (I − KtHt )Pt|t−1At
T +GtQtGt

T

Pt+1|t = (I + F(t)Δt)(I − Δt ⋅K(t)H (t))Pt|t−1(I + F(t)Δt)T +G(t)Q(t)Δt GT (t)

= Pt|t−1 + Δt ⋅F(t)Pt|t−1 − Δt ⋅K(t)H (t)Pt|t−1 + Pt|t−1F
T (t)Δt

+G(t)Q(t)Δt GT (t)+ (higher order small quantities)
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Pt+1|t = Pt|t−1 + Δt ⋅F(t)Pt|t−1 − Δt ⋅K(t)H (t)Pt|t−1 + Pt|t−1F
T (t)Δt

+G(t)Q(t)Δt GT (t)+ (higher order small quantities)

qMoving                to the left hand side and divide both sides by

qAs                ,

Pt|t−1 Δt

Pt+1|t − Pt|t−1
Δt

= F(t)Pt|t−1 + Pt|t−1F
T (t)− K(t)H (t)Pt|t−1 +G(t)Q(t)G

T (t)

Δt→ 0 lim
Δt→0

Pt|t−1 = Pt = P(t)
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Pt+1|t = Pt|t−1 + Δt ⋅F(t)Pt|t−1 − Δt ⋅K(t)H (t)Pt|t−1 + Pt|t−1F
T (t)Δt

+G(t)Q(t)Δt GT (t)+ (higher order small quantities)

qMoving                to the left hand side and divide both sides by

qAs                ,

Pt|t−1 Δt

Pt+1|t − Pt|t−1
Δt

= F(t)Pt|t−1 + Pt|t−1F
T (t)− K(t)H (t)Pt|t−1 +G(t)Q(t)G

T (t)

Δt→ 0 lim
Δt→0

Pt|t−1 = Pt = P(t)

dP(t)
dt

= F(t)P(t)+ P(t)FT (t)− P(t)HT (t)R−1(t)H (t)P(t)+G(t)Q(t)GT (t)

where we used

q This is called the Riccati Differential Equation. Note that this is a matrix equation. Since the 
covariance is a symmetric matrix, independent scalar differential 
equations are involved.  

K(t) = P(t)HT (t)R−1(t)

P(t)∈ℜn×n 1
2
n(n+1)



12

dP(t)
dt

= F(t)P(t)+ P(t)FT (t)− P(t)HT (t)R−1(t)H (t)P(t)+G(t)Q(t)GT (t)

Matrix Riccati Differential Equation
qEach term involved in the Matrix Riccati Differential Equation has a clear physical meaning.

The effect of the unforced system 
dynamics upon the error 
covariance transition.
dx
dt

= F(t)x(t)+G(t)w(t)

(62)
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dP(t)
dt

= F(t)P(t)+ P(t)FT (t)− P(t)HT (t)R−1(t)H (t)P(t)+G(t)Q(t)GT (t)

Matrix Riccati Differential Equation
qEach term involved in the Matrix Riccati Differential Equation has a clear physical meaning.

The effect of the unforced system 
dynamics upon the error 
covariance transition.

Expected reduction of 
uncertainty as a result of 
state update using sensor 
signals having covariance 
R(t).

Expected increase of 
uncertainty due to process 
noise with Q(t).

dx
dt

= F(t)x(t)+G(t)w(t)

(These matrix products are positive semi-definite.)

qThis Riccati equation is the key component determining the optimal state update gain, i.e. 
Kalman Gain: . It aggregates both state propagation and update 
laws, and represents how each of propagation and update contributes to the prediction 
uncertainty, together with the inherent dynamics of the process. 

K(t) = P(t)HT (t)R−1(t)

(62)
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Kalman-Bucy Filter (Continuous-Time Kalman Filter)  - 1961

dP(t)
dt

= F(t)P(t)+ P(t)FT (t)− P(t)HT (t)R−1(t)H (t)P(t)+G(t)Q(t)GT (t)

Linear Time-Varying System

dx
dt

= F(t)x(t)+G(t)w(t)

y(t) = H (t)x(t)+ v(t)

d
dt
x̂(t) = F(t)x̂(t)+ K(t)[y(t)− ŷ(t)]

The Riccati Differential Equation

State Equation

Measurement 
Equation

State update & propagation

Covariance update & propagation

Assumed Observable.

where K(t) = P(t)HT (t)R−1(t) Kalman Gain

E[v(t)vT (s)] =
R(t); t = s
0; t ≠ s

,
⎧
⎨
⎪

⎩⎪

E[w(t)wT (s)] =
Q(t); t = s
0; t ≠ s

⎧
⎨
⎪

⎩⎪
,

E[v(t)wT (s)] = 0;∀t,∀s

Uncorrelated 
noise
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6.2 Algebraic Riccati Equation (ARE)
qThe Riccati differential equation is nonlinear. We aim to examine:

§ How does P(t) evolve with time?
§ Does it converge?
§ If converging, will it converge to 0 or somewhere else? or

q Before analyzing the dynamic transition, we begin with steady-state properties.
q Assuming that the Matrix Riccati Differential Equation converges.

,

q Under this assumption, the Riccati Differential Equation reduces to an algebraic equation.

q This is called the Algebraic Riccati Equation (ARE).

P(t) →
t→∞
0 P(∞) ≠ 0

d
dt
P(t) →

t→∞
0 P(t) →

t→∞
P∞ F(t),G(t),H (t),Q(t),R(t)→

t→∞
F ,G,H ,Q,R

0 = FP∞ + P∞F
T − P∞H

T R−1HP∞ +GQGT



16

A Scalar Case of the Algebraic Riccati Equation 

qConsider a scalar case where all the variables and parameters are scalar. The 
Algebraic Riccati Equation reduces to 

qThis is a simple 2nd order algebraic equation with the following solution.

qBy definition                                    . Therefore, we discard the negative solution. 

2FP∞ − H
2

R
P∞
2 +G2Q = 0

P∞ = R
H 2

F ± F 2 + H
2

R
G2Q

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

P(t) ≥ 0,P∞ ≥ 0

P∞ = R
H 2

F + F 2 + H
2

R
G2Q

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0 = FP∞ + P∞F
T − P∞H

T R−1HP∞ +GQGT
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At = I + FΔt = I

P∞ = R
H 2

F + F 2 + H
2

R
G2Q

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

A Scalar Case of the Algebraic Riccati Equation (Continued)

q Let’s examine the solution:

Case 1. F = 0
This implies the estimation of 
constant parameter. P∞ = G

H
RQ

If R or Q is 0, then                assuming GH > 0. P∞ ≅ 0

Case 2. Q = 0 No process noise

P∞ = R
H 2

F + F 2( )
2-a)    F > 0, i.e. an unstable system

2-b)    F < 0, i.e. a stable system

P∞ = R
H 2
2F

P∞ = 0

Case 3. R ≅ 0 A perfect sensor

P∞ = R
H 2

F + F 2 + H
2

R
G2Q

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

→
R→+0

0

qCovariance never goes to zero, unless or               .

1. or F ≤ 0 &Q = 0
R ≅ 02.

P

time

F ≤ 0 &Q = 0 R ≅ 0
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6.3 Convergence Analysis and Transient Response
qWe have examined the steady-state solution to the Algebraic Riccati Equation, assuming that a 

solution exists. However, the original Matrix Riccati Differential Equation is nonlinear, 
simultaneous differential equations, the behaviors of which may be complex.

qHere, we examine the transient response of the differential equation and discuss conditions 
for obtaining a physically meaningful solution.

qWe introduce a technique for solving the Matrix Riccati Differential Equation.
Lemma Matrix Fraction Decomposition

Suppose that the square matrix          in the Matrix Riccati Differential Equation is decomposed to

Where A(t) and B(t) are differentiable and B(t) is non-singular. Then the Matrix Riccati
Differential Equation, eq.(62), can be written in the following linear form.

P(t)

P(t) = A(t)B−1(t), ∀t

d
dt

A(t)
B(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

F(t) G(t)Q(t)GT (t)

HT (t)R−1(t)H (t) −FT (t)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

A(t)
B(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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Proof of the Lemma

Since matrix B(t) is non-singular,

Differentiating yields 

B(t)B−1(t) = I → !BB−1 + B !B−1 = 0 → !B−1 = −B−1 !BB−1

P(t) = A(t)B−1(t)
dP(t)
dt

= !AB−1 + A !B−1 = !AB−1 − AB−1 !BB−1

Substituting    into the Riccati Equation yields. P(t) = A(t)B−1(t)

dP(t)
dt

= FAB−1 + AB−1FT − AB−1HT R−1HAB−1 +GQGT

(74)

(75)

Comparing (74) and (75), we find
!AB−1 − AB−1 !BB−1 = FAB−1 + AB−1FT − AB−1HT R−1HAB−1 +GQGT

Post-multiplying B to both sides,

!A− AB−1 !B = FA+ AB−1FT B − AB−1HT R−1HA+GQGT B

dP(t)
dt

= F(t)P(t)+ P(t)FT (t)− P(t)HT (t)R−1(t)H (t)P(t)+G(t)Q(t)GT (t)
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!A− AB−1 !B = FA+ AB−1FT B − AB−1HT R−1HA+GQGT B
Collecting terms, we obtain:

dA
dt

− AB−1 dB
dt

= (FA+GQGT B)− AB−1(HT R−1HA− FT B)

Comparing corresponding terms on both sides, consider the following two differential equations:
dA
dt

= (FA+GQGT B), dB
dt

= HT R−1HA− FT B)

These two matrix differential equations can be combined as

d
dt

A(t)
B(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

F(t) G(t)Q(t)GT (t)

HT (t)R−1(t)H (t) −FT (t)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

A(t)
B(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The matrix of the above linear differential equation is a Hamiltonian Matrix. 

Punchline If we find A(t) and B(t) that satisfy the above linear differential equation, 
then  is a solution to the Riccati Differential Equation.P(t) = A(t)B−1(t)
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qNote that the above differential equation is linear, although the original Riccati equation is 
nonlinear.

qUsing this linear equation, we can investigate properties of the Riccati equation.
q Let us first consider a scalar case: 

where a(t) and b(t) are scalar functions and . We also assume that the system is time-
invariant with all parameters being constant: F, H, G, Q, and R.

P(t) = a(t) / b(t)
b(t) ≠ 0

!a
!b

⎛

⎝⎜
⎞

⎠⎟
=

F G2Q

H 2

R
−F

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a
b

⎛

⎝⎜
⎞

⎠⎟

qThis linear differential equation with constant parameters can be solved without difficulty. 
First computing the eigenvalues of the Hamiltonian matrix yield.



22

qThe solution is given by

where initial conditions are

and M is the Hamiltonian Matrix above, 
which can be diagonalized using eigen 
vectors associated with the eigenvalues.

qThis leads to 

where . Therefore, the covariance is given by

qThe steady-state solution is given by

This agrees with the solution to the Algebraic Riccati
Equation.
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From Grewal and Andrews, “Kalman Filtering”, Chapter 4.8, Wiley 2001.

Numerical Example

q Note that the denominator may 
become zero at time:

q This implies that the solution is 
discontinuous, going from negative 
infinite to positive infinite when 
passing the zero point. 

q This undesirable discontinuity does not
occur when it starts with an initial
condition

Larger than the negative solution of ARE.
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Example 1
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Example 2

x

y

biasb
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Questions

state

parameter
There is no fundamental difference between state and parameter.
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x

y

biasb
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Solution

Question

dP(t)
dt

= F(t)P(t)+ P(t)FT (t)

− P(t)HT (t)R−1(t)H (t)P(t)

+G(t)Q(t)GT (t)

2 x 2 matrix
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Solution

Question

=
p1 p2
p2 p3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟


