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2.160

ldentification, Estimation, and Learning

3-0-9 H-Level Graduate Credit
Prerequisite: 2.151 (2.14/2.140) or similar subject

Professor H. Harry Asada

Ford Professor of Mechanical Engineering
asada@mit.edu , Room 3-346, x3-6257

TA: Nicholas Selby, nselby(@mit.edu

.
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H. Harry Asada

* Regularly teaches
— 2.12/2.120 Introduction to Robotics

» Has taught
— 2.151 Advanced System Dynamics and Control
— 2.165 Robotics
— 2.004 Dynamics and Control
— 2.03J (2.003) Dynamics
— 2.14 Feedback Control
— 2.671 Measurement and Instrumentation
— 2.86 (2.008) Manufacturing

» Specializes in Robotics, Control, and Biological
Engineering




Quick introduction of the instructor:
H. Harry Asada

Ford Professor of Engineering

Wearable Extra Limbs Introduction to Robotics

Human Augmentation: People can
possess extra arms, legs, and fingers for
augmenting and compensating for the
physical and cognitive abilities.

Robotics provides students [

with clear, tangible, and
graphical understanding of
complex motion and
underpinning math

Robotics and physics.
2.12:

Robotics Education Multi-disciplinar capstone course
Rese~>x _ CILESVES LY Integrated cellular systems

Medical Research

Optogenetic control of
skeletal muscles

Wearable Health
Monitoring

Modeling & Computation
of 3D cell migration






Biologically-Inspired Actuators
US Patent 7,188,473

Ball-Wheel
Holonomic Wheelchair
US Patent 5,927,423

Direct-Drive Robot US Patent 6,388,247
US Patent 4,425,818

Harry Asada
An inventor

Wireless Networking
US Patent 6,553,535
US Patent 7,376

Ring Sensor (& ()
US Patent 6,402,690 ) @ 9

High Strain PZT
Modular Actuators

’r!\\/er Wearable Healt
Monitoring Monitoring



Teaching Style:
Theory for the User



WHAT IS 2.160?

* Not a fancy subject, like robotics and design subjects.

* But, if you wish to learn something fundamental,
establish a sold foundation, or apply an analytical
and/or mathematical methodology to your thesis
research, you will find 2.160 to be a useful subject.

Goal of the Subject

2.160 seeks deeper understanding, clear insights,

scientifically sound methodologies, and practically useful
techniques for modeling, estimation, and learning.




Cross-Disciplinary Study
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System
Dynamics

Prediction

Machine
Learning

2.160 addresses diverse topics 1n a cohesive manner. These include
system 1dentification, estimation, prediction, inference, classification,
and learning. Although the objectives are different among these topics,

the underpinning theories, techniques, and algorithms are common to
them. These have been established at the cross-disciplinary area of
system dynamics, machine learning, and statistics.



Clever
Algorithm
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Put all 1n one subject, 25 lectures

2.160




General Course Information

Class

Synchronous Lecture on Zoom

Monday and Wednesday: 1:00 pm — 2:30 pm
All lectures are recorded and posted for your review.

Lecture slides will also be posted.



Lecture Notes

Will be provided for (almost) every lecture

Intuitive and helpful for understanding
fundamental concepts

Intensive and extensive: covering a lot of topics
Examples
Background materials and review

Read them before going to reference books



No Formal Exams

* You will not have formal exams: no mid-term, no final
exam,;

* Instead, you will work on 4 Context-Oriented Min1 Projects
and 6 homework assignments.



Grading

* Context-Oriented Projects™ 50%
(4 projects)
« Homework Assignment™ 40 %
(6 assignments)
« Participation™* 10%
Total 100%

* Assignments will be given mostly on Monday, and will be
due in the following week.

** Participation in study group meetings and active
engagement with lectures



Study Group Meetings

Student groups, each consisting of 6~8 students, will be
formed.
Each group will meet weekly on Friday for

— Discussing Context-Oriented Min1 Projects and Homework
Assignments, and

— Review and recitation of lecture materials

TA, Nick Selby, and/or Professor Asada will participate in
each study group meeting.

Schedule will be discussed later.



Ethics

» Use of problem set solutions of previous terms i1s strictly
prohibited.

* Students are encouraged to discuss problem assignments
with one another. However, each student must submit
his/her own solution to each problem set and mini project.



In Case of Difficulty,...

Contact Professor Asada and the Student Support
Service office.

One assignment relief: You can skip one homework
assignment without penalty.

Late submission of one Mini1 Project without penalty
Prior notification to Professor Asada 1s required.

Your mental and physical health 1s more important
than your work performance.

PS Grading Eliminate the lowest score PS.

75, 85, 90, 67, 65,and ;/f
- - g
Counted toward the final grade.




Learning Management System

 We will use Canvas + Panopto
— These tools are still relatively new to the MIT community.

— We will also use Stellar in the beginning. All the lecture notes,
handouts, lecture slides, assignments will be posted on Stellar.

— We will move to Canvas as we get familiarized with the new
system. This may occur before the first due date of assignment.

— TA will make clear announcements what to do.



Perspective of 2.160

History, Theory, Key Concept, Application, Projects



2,160

Part 1: Regression

...5 lectures

Part 2: Kalman and Bayes Filters
...6 lectures

Part 3: System Identification of Linear Dynamical Systems
...6 lectures

Part 4: Machine Learning and Nonlinear System Modeling
...”7 lectures



Part 1: Regression
0 Input
utput

y=ax+b
a \/
. Parameters to estimate

Find the parameter values that

Data minimize the total squared error:

Ve (0) = %Z@(r 10)— y(1))> = min

Least Squares Estimation



Find input-output relationship.

Challenge: High Dimensional Space

X
> Vi
Y,
X. >
l .
> yf
xm
yj — ajlxl -+ aj2x2 e R -+ ajmxm
Estimate parameters @, -+ ,a_: anill-posed question(?) **



Input variables may be collinear;
The input data set may not contain samples in
some directions in the input space

X, N
y] — ajlxl -+ aj2x2 e R -+ ajmxm
Estimate parameters @ ;;,-- -+ A, 1 an ill-posed question(?)



Extracting significant variables from the input data

- J

Y ]
Latent Variables

> )
> )2

!
Extraction of Significant Variables
N

=
Regression on the latent variables

:yﬁ

X

m

Regress output y on latent variables, Z;,*****" ,Z

yj:bj121+"""°"+bm*zm* m*<<m



Lecture 5 Principal Component Regression:
an example of latent variable method

Yy

YyYYyYVYYY

YyYvYyYYVYly

Extraction of Significant Variables

YYyYVYVYVY

Principal Components Analysis *»
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A drawback of Principal Component Regression is that Components with a large
Lecture 6 eigenvalue in the input space are not necessarily significant for predicting the
output; small eigenvalue components may be more correlated with the output.

Partial Lest Squares (PLS) Regression can solve this problem.

X, 4 i-th sample r W

Input space X Output space

M o *

LIPS ®
Find a pair of unit vectors, v € R", w € R”, such that the correlatlon betweenz = V' X
and s=wW' Y becomes maximum.

The optimal v and w are the left
V . .
— arg maxE [z-5]=arg max v E[xy Tw and rl.ght smgular vectors |
w ‘ V= 1 associated with the largest singular
w|=1 value of Cross-Covariance

Singular-Value Decomposition C,, =E[xy'] >SwD



Where are these methods used?

Drug discovery and
Pharma Refinement
A

Personalized treatment and
customized modifications

?4,7 i V. . n .-\7‘._ .
E7 - =
High Precision of : &‘m
Robotic Surgery ""lq&ﬁ
Upgraded Diagnosis and

Automatic Treatments .Q” i E- c o m m e rce

Smarter Medical Data
Collection

D
=
4




RECHTSIVG Estimation What if the data are obtained one
by one sequentially?

Sample 4 Optimal a and b/ based on

X

y

the first 4 samples

——y=ax+b

Sample 5

New data Optimal a and b based on

the first 5 samples

Question: Do I need to
compute a and b from
scratch?

Answer: No, only small
changes Aa and Ab must be

made, given a new sample.




Gauss observed the movement of planets nightly
and discovered the celebrated
Recursive Least Squares Algorithm

Astronomy influenced
Math & Science

33



Lecture 3

Recursive Least Squares

O Recursively estimate parameters involved in the model. §

( )

Real y X A . i
Process 0(1)=0(t-1)+K gz(t) — Vy(qo,Hz
\ Prediction Error
_u g K, —"
I- - A type of gain for correcting the error
- Model ~— K - P_o(2)

F: y(p(u),0) "1+l () P_é(2)

p—p _ Pt—1(p(t)§0T(t)P;_1
T (0" OPLe(0)

This Recursive Least Squares Algorithm was originally developed by
Gauss (1777 — 1855)



Smart traction + suspension control

Recursive Least Squares inside

Road conditions may vary.

A . Time
o(1) Real time data
y(1)
Recent g R
Old data past Time
data

Indirect Adaptive Control

Adaptation | 0

Law !

N Parameter .
Estimation
@(1) »(2)

. Feedback . plant

Control

\

35



Recursive Least Squares

|

1821

Real
Process

v+
K, —0

»/ Model

Q>
>

o

Y(p(u),0)

Kalman Filter

1960
Process Noise Measurement Noise
w l V
" Physical ‘ )/. .
) >
»| Process
1 v +
u Kalman Gain & 5
Covariance Update t
Model o—>

x(t)=x(t|t-1)+K, (W) —-H(0)x(t |t 1))



Random Processes

Correlation
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Lecture 4

Random Variables and Random Processes

Uncorrelated
w A < L
P
rocess ], o Wb , .
VINTVZ Y \IVV N U Correlation
. ime
) A L ﬁUncorrelated E[XY]= T T X [y (X, y)dxdy
Measurement ” /\ /
(Sensor) Noise Iv'v U“' V"V I -
ime

Figure 4-5 Noise characteristics

Covariance of X and Y = E [(X-my) (Y-my)]

Math Policy:
Necessary math will be introduced/reviewed when needed / as needed.



Adaptive Noise Cancellation: An Application of Random Processes

.y
b

y(8)=x()+w(t) z() = y(t) = w(?)
True Signal (1) z(1)
Rade "o Microphone 1 To
.X'(t) +W(t) —
Interference w(t)
Dynamics

m Noise Microphone 2 Ade.1p tve
v(t) Filter

39



Context-Oriented Project #1.:

Active Noise Cancellation for Wearable Sensors
f"'\

£ =
i \,.. |

— MEMS
Body motion PPG Accel )
=4 Corrupted ccelerometer
signal colocatodl ith PPG fing sensor
\ A t Asada, et al 2001
ctive
Signal Source === Sensor (PPQG) ~—-> Noise = Apple iWatch
Cancellation | Recovered ——

Signal

Disturbances,
Motion

celeromet




Active Noise Cancellation

Orthogonality of two signals
E[XY]=0

Recovered Signal

Stationary

\

SWI ng | ng ) ) ) ) ) I:agerre R- nstru::tion
e

\_/

FIR Reconstrucion

1
1
1
1
1
1
1
- . = 1
Motion Corrupted Signal : | |
= 1 1 1 1
[ 84 | | | | |
&[ A ‘?b I : : : Reference Signal :
\ . 1 1 1 1 ’ 1
Correct Signal ! ! : ! :
i i : i Acceleration i T
e il VAVAVATAVAVAY P
Acceleration R I A S S I N
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [sec]

Acceleration [G]



Lecture 7 Part 2: Kalman and Bayes Filters

Kalman Filter Framework

Process Noise j Measurement Noise
Wl‘
Vt
Real iz
—> — Sensors >
., System N
t .
— Gain 3
Input ¥
> Model —

[Prediction Error]

[Correction] oc : : . .
[Confidence of Previous Estimate]x[Noise Variance]



Knowledge about the Process

Vehicle Localization Problem:
Finding where it 1s now.

Model = What we know about the robot
and the environment.

Vehicle Dynamics: F' = mXx

X
We can predict the vehicle position by J\_}
simulating the dynamic equation. =

v

Because of disturbance
and noise, 1t may have
some €error.

F=mx+w |

Process Noise .



Measurement Noise

Landmark

n=ﬁ+?
Measurement Noise If two sensors are used,
2
. o 0
Mean = 0, Variance = O ’ R=| * ,
0 o

Experimentally determined

44



Lecture 7 Part 2: Kalman and Bayes Filters

Kalman Filter Framework

Process Noise j Measurement Noise
Wl‘
Vt
Real iz
—> — Sensors >
., System N
t .
— Gain 3
Input ¥
> Model —

[Prediction Error]

[Correction] oc : : . .
[Confidence of Previous Estimate]x[Noise Variance]



Kalman Filter applied to the Apollo Moon Mission
Moon Shot

Filter starts with Estimate improves
rough estimate as more data used

Kalman
\. filter d
True Onboard
trajectory measurements @

Rudolf E. Kalman



Discrete-Time Kalman Filter

Lecture 7, 8

Kalman-Bucy Filter
(Continuous-Time)

Matrix Riccati Equation

Linear Plant Dynamics
Gaussian Distribution

Optimality

Kalman Filter ¢

Nonlinear Dynamics

/

Lecture 9

Part 2 Kalman and Bayes Filters

Extended Kalman Filter
Unscented Kalman Filter

Non-Gaussian Distribution

/

Lecture 10

Monte Carlo Simulation
Sampling Technique

|

Linear Dynamics
Gaussian Distribution Particle Filter

| Bayes Filter /

Lecture 12




Lecture 11

Visual SLAM

Simultaneous Localization and Mapping

3D Trajectory

02

04 G meg——
- ~ 03 0.2

X (m) y (m)

Professor John Leonard

48



Context-Oriented Project

Robot Localization
and Navigation
Using advanced

Kalman Filters:
Extended KF
Unscented KF
Bayes filter
Particle filter

No.2

edestrian




Part 3:
System Identification of Linear Dynamical Systems

?

>T - Control » Plant ——




Physical Modeling : 2.151/2.140, 2.032, 2.004, 2.003, etc.

Passive elements: mass, damper, spring
Sources

Transducers
Junction structure

b=

Physically meaningful parameters

Y(s) bys" +bs" +--+b,

G(S): _ n n—l1
U(is) s'+as" +--+a,

a, =a,(M, B, K)
b.=b.(M, B, K)



Mathematical models of real-world systems are often
too difficult to build based on first principles alone.

Fluid-thermal
Systems

Physical Modeling:
Too complex to model

Energy Systems
(Building'HVAC)

" Smart Grid



System ldentification;
“Let the data speak about the system”.

Input u(?)
mmmmmmmd  Black Box

Output y(?)

MMM,

V

' Y(s) bys" +bs"" +--+b, d

G(S): - n n—1
U(is) s'+as" +---+a,

Find a model structure and determine parameter values
that fit the data.



L1

O
Pros

1. Physical insight and knowledge
2. Modeling a conceived system before hardware is built

Physical
modeling

Cons
1. Often leads to high system order with too many
parameters

2. Input-output model has a complex parameter structure
3. Not convenient for parameter tuning
4. Complex system; too difficult to analyze



I

Data-Driven Approach

Physical

modeling = Comparison amg Black BoX [mmg
@ Pros

Pros 1. Close to the actual input-output

1.

2. Modeling a conceived system
before hardware is built

Cons

1. Often leads to high system order
with too many parameters

2. Input-output model has a
complex parameter structure

3. Not convenient for parameter
tuning

4. Complex system; too difficult to

Physical insight and knowledge

analyze

behavior

2. Useful for complex systems; too
difficult to build physical model

3. Quantify noise and uncertainty

4. Convenient structure for
parameter tuning

Cons

1. No direct connection to physical
parameters

2. No solid ground to support a
model structure

3. Not available until an actual

system has been built



Lecture 13
S Obtaining a Transfer Function from Input-Output Data

Time Domain Frequency Domain
V(D) Noise G(e®) = (Cross Spectrum)
_ Power Spectrum
V' LQ " ' i ;_(';(I) y(1) l R ( P ) Bode Plot
u(?) Smoothe / [
d curve |

Impulse Response to White noise

Cross-Correlation S ,
Wiener-Hopf Equation o—L| - A
Ruy(T) = Elu(t)y(t+7)] 0" Local avelraglng window
= Elu(t)y(t+7)]+ E[u(t)v(t+7)] .
_ s

= Elu()y(+7)] 31 |

<QJ“ -

v

o]
)= R, (0, 1=01:N



Lecture 14
Parametric System ldentification

Parametric Model G(q) = b

—1 —2 —n,
l+a,q +aq tta, q

g+ bzq_2 +-tb g "
b

Parameters to identify

9:(&1’...’an 9b1’”'9bnb)T

Prediction-Error Method

Noise
| | W(2)
— Real System | \,,
' | | %) Prediction Error
-~ Model: §—————
| | y(t]0)

A i D )
6y =argmin— > (y(1)=5(1|6)

How many data are required? What would be effective input signals?

Bode Plot

Non-Parametric



Lecture 15

A
Oy

Central Limit Theorem

9*

Distribution of éN

Asymptotic Distribution of Parameter Estimates

I 1

The variance 1s
small for large M.

/

7

The variance is -7

large for small V.

How quickly
does the variance
reduce?

The main points to be obtained in this chapter

The variance analysis of this chapter will reveal

a) The estimate converges to € at a rate proportional to

Iteration/Data Number

Quality of Identification

N

b) Distribution converges to a Gaussian distribution: N(0, Q).

c) Cov éN depends on the parameters sensitivity of the predictor: 29

Identified model parameter éN with cov éN :

A

dy

a “quality tag” confidence interval



Input Design

Sine

L \ | Ch Pseudo-Random Binary Signal
o / 1rp (PRBS)

T T T T _ )
T
- -

L
le(t)

u(t)

True Process y(t)

Experiment Design q ‘

Data Set |
Model Set argminV, (6) . Consistency
0 |
7N _ {u(z‘),y(t)} M éN »




Identification of Ankle Impedance: Experiments
Hyunglae Lee Professor Neville Hogan’s Lab

12 unimpaired young subjects

Measurements both in seated and standing postures

Two uncorrelated random perturbations (bandwidth of 100Hz) for 40 sec.

Muscle active conditions: Relaxed, TA active, SOL active, and Co-contraction
Target activation level: 10% MVC

Pseudo-Random
Binary Signal Seated Standing



Context-Oriented Project No.3
Cardiovascular Monitoring

Identify the transfer NOI’_lInvaS|ve:
function from cardiac peripheral sensors
output to peripheral

pressure;

Based on the model
estimate the cardiac output
from the peripheral
pressure measurement.

PPG Ring Sensor

Wearable

Deriving ‘central’ information
from ‘peripheral’ noninvasive measurements

Multi-Channel Blind System Identification Zhang and Asada, MIT



Context-Oriented Project No.3

Cardiac system identification and cardiac output waveform
estimation using the Laguerre deconvolution algorithm

Cardiac output waveform estimated via LaMBSI
400 .

300+

200}

100

Estimated CO waveform

120 121 122 123 124 125

Measured cardiac output
10

Flow (L/min)

[

_5 I L L
120 121 122 123 124 125
time (sec)




Part 4:
Machine Learning and Nonlinear System Modeling

Dependent Variable

Independent Variable



Function Approximation and Learning

Nonlinear function

————




Lecture 19

Function Approximation Theory

Expand the original nonlinear function to a series of basis functions:

Basis functions ~ go(x) =D a,g,(x: B..7,)
k=1

Basis functions:
The original * Radial basis functions
nonlinear function ° Wavelets

. / e Neural nets
\
\

g =K 05,71) .

Varying only in a local area

A broad class of nonlinear functions can be approximated to a series of basis functions to
any accuracy. &— o proof



Multi-Layer Perception

Layer 2
Layer M
Input 4 Output
Layer Hidden Layers Layer

The Multi-Layer Perception is a universal approximation function that can approximate an
arbitrary (measurable) function to any accuracy.

How do we train the multi-layer perceptron,

given training data presented sequentially? The Error Back Propagation Algorithm



Prediction Error Formalism extended to machine learning

Nonlinear
Z/ll True ny(Ml,Mz,...,um)
u, . System .
: (Real)
u - (] 0)—y(1)
T+ Prediction Error
Model
o A s L
f y(|0) = f(u,,u,,...,u,;0)
Neural Net

Ve (0) = %Z@(’ 10)— y(1))* = min

Optimal Estimate: 0= argminV, (0)
0




Lecture 20
o Neural Network and Learning Algorithm Target output

- P v

) —@ Error

,,
Ras

Correcting the
parameters

oe-

Estimated
output

Prediction error formalism

1. :
Error Backpropagation Algorithm "(9)=7 ;(y (t10)=x(1))



An alternative method is to execute updating the weight Aw, every time the training data
1s presented.

(8) Aw. [k = polk]x.[k] for the k-th presentation
(9)  where 5(k) = y[k]— > w,[k]x,[k]
” LN

Correct output for the Predicted output based on the

training data presented weights w, |k |for the training data

at the k -th time presented at the k -th time

Jy 4
N presentations

x|, y|1])...(x|N[,y[N]).

(WH[D(“/[?H | I I
I I I I I
—— Y —— — N J

epoch 1 epoch 2 epoch 3 epoch 4 epoch p
W,
>

W
Minimum
W-space pont




Lecture 21

Deep Learning

Many hidden layers : 5~20 layers
Revised output functions
Convolutional Neural Net (CNN)
MaxPooling

Big Data

Computing power: GPU

conv (180w + 5b)

b — non-linear

maxpool

conv (450w + 10b)

. maxpool
non-linear

eeececececeece

fully-connected @
(1600w + 10b)

\oloelNJodallwlnl o)



Correlation

Convotationat Neural Network

Low-Level = Mid-Level High-LeveH_' Trainable
Feature Feature Feature Classifier
4 4 |

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



System Identification
And Learning

Non-Parametric <

Time Domain

Frequency Domain

A

y

Exact
Linearization in

Lifted

Space

A

Gaussian Processes

| Linear
(Part 3) Prediction Error
- Method
Parametric
Subspace Methods
Neural Networks > Deep Learning
Radial Basis
‘| Nonlinear Function Functions
(Part 4) Approximation
Wavelets
Support Vector
Kernel }i )
cres Machine




Lecture 24

Exact Linearization of

Nonlinear Dynamical Systems

Unlike traditional linearization of nonlinear
functions, Lifting Linearization is a novel
method in which a nonlinear dynamical
system is recast in a higher-dimensional
space, so that the nonlinear system may
behave linearly in the augmented, or lifted

space.

Koopman [1931] proved that a general
nonlinear system can be represented as a
linear system in an infinite dimensional

space.

The Koopman Operator, however
O Only for autonomous systems with no input;

d Infinite dimensional space

“X_rox
dt
Linear
( \
¢,(x)
| 2
P5(x)
.
Observables
dx
i Sf(x)

Complex nonlinearity in
the original state space

Lifting

A 9;{”




Lecture 25 Dual-Faceted Linearization

Nonlinear

Nonlinear
Transformation

1 =h(x)

1 Applicable to controlled systems;

Hydraulic System: An Example

y

Measure both
Flow rate and pressure

]

O Lifting to a finite dimensional (relatively low) space;

 Physically meaningful augmented state variables.

Pressure
/ Direction;
Control ]
- Valv_e '

Flow Iiate ,

Bypass
Valve

3,000 psi 6
Hydraulic

Cylinder

Return-line
Filter

Tank



Application of DFL to Model Predictive Control (MPC) of Nonlinear Systems

State
Variables , Lifting Linearization: U The original system is nonlinear;
| Algebraic linearizatiop: Koopman, DFL O Lifting the system using DFL for
Taylor Expansion - /I accurate linearization;
P Q Apply MPC to the linearized system;
, L
, Nonlinear d Convex opt1mlzat10n, fast
Dynamics computation
Time
Horizon, MSE | Calculation time[sec]
> Koopman 0.0389 0.00215
{ r+ 71 Time DFL 0.0364 0.00135
Taylor 0.121 0.00131
MPC ) NP 0.0371 0.0845
S _ (" NP(Direct Collocati 0.0376 0.212
Minimize P = [ £(x(7),u(2))dT+p(x(t+T)) (Direct Collocation)

Subjectto X(£)= f(x(£),u(t)) *,()=x(t)  C(x(t),u(t)) <0



Conclusion:
You will learn a lot in 2.160.



WHAT IS 2.160?

* Not a fancy subject, like robotics and design subjects.

* But, if you wish to learn something fundamental,
establish a sold foundation, or apply an analytical
and/or mathematical methodology to your thesis
research, you will find 2.160 to be a useful subject.

Goal of the Subject

2.160 seeks deeper understanding, clear insights,

scientifically sound methodologies, and practically useful
techniques for modeling, estimation, and learning.




1. 9/2-W
9/7-M
2. 9/9-W
3. 9/14-M
4. 9/16-W
5. 921-M
6. 9/23-W
7. 9/28-M
8. 9/30-W
9. 10/5-M
10. 10/7-W
11. 10/13-Tu
12. 10/14-W

Syllabus and Schedule

Introduction

Labor Day Holiday,no class
Part 1. Regression

Least Squares Estimate

Recursive Least Square (RLS) algorithms

Random processes, Active noisecancellation

Model Reduction— 1, Principal Component Regression

Model Reduction— 2, Partial Least Squares Regression
Part 2. Kalman and Bayes Filters

Discrete Kalman Filter

Continuous Kalman Filter

Extended Kalman Filter and Unscented Kalman Filter

Bayes Filter

Simultaneous Localization and Mapping (SLAM)

Particle Filter

PS/Projects  Study Group

PS#1 Out 9/11 Kick-off
Project#1 Out 9/18 PS#1
PS#1 Due,

9/25 Project#l

Project#1 Due, PS#2 Out

10/2 PS#2
PS#2 Due, PS#3 Out

10/9 PS#3
PS#3 Due, Project #2 Out

10/16 Project#2
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10.
11
12.
13.

10/19-M
10/21-W
10/26-M
10/28-W
11/2-M
11/4-W
11/9-M

11/11-W
11/16-M
11/18-W
11/23~25
11/30-M
12/2-W
12/7-M
12/9-W

PS/Project Study Group
Part 3. Linear System Identification

Non-parametriclinear system identification Project#2 Due, PS #4 Out
Linear parametric systems identification 10/23 PS#4
Asymptotic parameter distribution and Experiment design PS#4 Due, Project#3 Out
Unbiased identification, Laguerre series expansion 10/30 Project#3
Subspace methods — 1, Realization Project#3 Due

Veterans Day Holiday, no class

Subspace methods - 2 , MOESP,N4SID PS#5 Out
Part 4. Machine Learning and Nonlinear System Modeling

Universal function approximation; Radial basis function network 11/13 PS#5
Multi-Layered Neural Network and Error Back Propagation PS#5 Due, Project #4 Out

CNN, Recurrent network, and Deep neural network 11/20 Project#4
Thanksgiving Holidays

Support Vector Machines and Kemel Trick Project#4 Due, PS#6 Out
Gaussian processes fornonlinear system ID and prediction 12/4 PS#6

Koopman operatortheory forexact linearization of nonlinear dynamical systems, PS#6 Due

Dual-Faceted Linearization with application to nonlinear Model Predictive Control



