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Rank-Deficit Data Matrix
In previous chapters on Least Squares Estimate and Recursive Least Squares, we assumed that 

ϕ(i)ϕT (i)
i=1

t

∑ =  Non-singular, P0 = Positive− Definite

This assumption may not be valid for:
qHigh input dimension: m >> 1

• Temporal case, e.g. a wide time window, 
slowly-decaying FIR model

• Spatial case, e.g. image data

q Limited sample size: N < m
• Difficulty in obtaining a large 

number of data under consistent 
conditions, e.g. clinical trial data, 
biological experiment

ϕ(t) = ( y(t),!, y(t −m))T ϕ(t) = (u(t −1),!, y(t −m))T

Pixels: m = (# of row) x (# of column)

Bio-System
Limited 
Input

Output

Many parameters

qWhen we do not know which input signals are important, we include as many potentially 
important inputs as possible. 
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Here we consider the case  N < m, and/or is singular

Approach

1. Use the pseudo-inverse
2. Regularization
• Ridge Regression

3. Statistical Multivariate Analysis
• Principal Component Regression
• Partial Least Squares Regression

ϕ(i)ϕT (i)
i=1

t

∑

Φ = [ϕ(1),!,ϕ(N )]∈ℜm×N

m

N
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1. Quick Math : Moore-Penrose Pseudo-inverse

Consider a linear simultaneous equation: Ax = b where A: m x n

q If there is no solution to Ax = b, then the pseudoinverse of A, 

denoted            , minimizes the squared error and is 

given by

With this, the solution is .

This corresponds to the Least Squares solution: 

q If there are many (infinite) solutions to Ax = b, e.g. n > m, 

then the pseudoinverse        provides the solution that 

minimizes the square norm of vector x.

Ax − b
2

x̂ = A#b

A#

A# = (AT A)−1AT

θ = ϕ(i)ϕT (i)
i=1

t

∑
⎛

⎝
⎜

⎞

⎠
⎟

−1

ϕ(i)y(i)
i=1

t

∑

min x
2

subject to Ax=b

x̂ = A#b Such that Ax̂ = b and min x
2

A#

Definition
Given a matrix ,

the matrix

that satisfies the 

following four conditions 

is called  the Moore-

Penrose Pseudoinverse:

A∈!m×n

A# ∈!n×m

1. AA#A = A

2. A#AA# = A#

3. (AA# )*= AA#

4. (A#A)*= A#A

where (X)* is conjugate 

transpose of X.

A pseudoinverse is unique.
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θ = ϕ(i)ϕT (i)
i=1

t

∑
⎛

⎝
⎜

⎞

⎠
⎟

−1

ϕ(i)y(i)
i=1

t

∑

Exercise:
Show that the Least Squares Estimate below is given by the pseudoinverse 

of the matrix concatenating all the regressor vectors

Φ = [ϕ(1),!,ϕ(N )]∈ℜm×N

θ = (Φ# )T Y

Y =
y(1)
!
y(t)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

where

ΦTθ = Y



6

2. Ridge Regularization

VR(θ ) = Y −ΦTθ
2
+η θ 2

θ̂R = argminθ
VR(θ )

dVR(θ )
dθ

= 0 d
dθ

Y −ΦTθ( )T Y −ΦTθ( )+ηθTθ⎡
⎣⎢

⎤
⎦⎥
= d
dθ

YTY − 2YTΦTθ +θTΦΦTθ +ηθTθ⎡
⎣

⎤
⎦ = 0

ΦΦTθ +ηθ = ΦY (ΦΦT +ηI )θ = ΦY

∴ θ̂R = (ΦΦ
T +ηI )−1ΦY

where is a weight that determines the trade-off between the squared 
prediction error and the magnitude of the parameter vector. 

This is only positive semi-
definite; not invertible.

The identity matrix 
is positive definite.

Positive-definite; invertible

As long as , a unique solution is obtained.
Regularization is a standard technique when you have some knowledge about an appropriate solution.

Consider a cost functional (penalty):

Find the parameter that minimizes it:

η > 0

η > 0
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Initial Conditions for Recursive Least Squares can be viewed as a type of regularization. 

t = 0 t = t

P0
−1 = ϕ(•)ϕT (•)∑ ,

B0 = ϕ(•)∑ y(•),

θ0 = P0B0

ϕ(•), y(•)
J0 =

1
2
(θ −θ0 )

T P0
−1(θ −θ0 )

qSuppose that before t = 0, there 
were some data                         .

qP0, B0, and q0 were computed
based on these data.

ϕ(•), y(•)

qConsider the following cost function J0. The 
parameter vector q that minimizes J0 is the 
initial condition q 0. 

qAs shown in Lecture Notes Chapter 2 Section 2.4, we 
can prove that the recursive least squares algorithm, 
starting with the initial conditions q 0 and P0 , is the 
optimal value that minimizes the following cost 
function.

Jt =
1
2

( y(i)−ϕT (i) ⋅θ )2
i=1

t

∑ + 1
2
(θ −θ0 )

T P0
−1(θ −θ0 )

qThe second term above can be viewed as a 
regularization term.

Regularization
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3. Statistical Multivariate Analysis
qExamine relationships among multiple variables in a high dimensional space; 
qJoint behaviors of multiple variables may indicate some redundancy, and two variables may be 

linearly correlated: collinear.
qWe are interested in extracting succinct, significant variables from high dimensional raw data;
qLatent Variable Method is to find hidden or encapsulated variables in the raw data that 

represent the raw data in a low dimensional space: Latent Model.
qPredict the output from the low-dimensional latent model
• Principal Components Analysis and Regression
• Partial Least Squares Regression

N < m
Raw data

m* < m

Latent Model

! y
Prediction of output 
(dependent variables) 
from the low-dimensional 
latent model

y =ϕTθ
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Pre-Processing
qA regressor vector contains multiple variables having 

different units and scales; Example: j = (10 kg, 5 m/s, 2 cm)T.
qTo make an apple-to-apple comparison, the variables must 

be normalized.

vMean-centering

ϕiϕi

ϕi ! ϕi −ϕi

Shift the origin to the mean ϕi
vNormalization with some reference value

xi =
ϕi −ϕi
σ i

σ i

reference value:
• Standard deviation
• Max – Min (dynamic range)

Input Data Matrix

Output Data Matrix

X = x(1) ! x(N )⎡
⎣

⎤
⎦ ∈ℜ

m×N

x =

x1
!
xm

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

∈ℜm×1

Y =
y(1)
!
y(N )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

∈ℜN×1

σ i

σ 2σ1
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4.1 Principal Component Regression: A Multi-Input, Single-Output Case

qExamine how input data are distributed in the m-dim space and reduce the space to a low 
dimensional space;

qThe distribution can be characterized with the covariance of preprocessed input data:
X = x(1) ! x(N )⎡

⎣
⎤
⎦ ∈ℜ

m×N

Recall we have defined Covariance of two scalar random variables, X and Y, as

cov(X ,Y ) = E[(X − E[X ])(Y − E[Y ])]
Covariance of a vector consists of covariances of all the combinations of the vector components.

C = cov

x1
!
xm

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

x1 " xm( )
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

E[x1
2] ! E[x1xm]

" # "

E[xmx1] ! E[xm
2 ]

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= E[XXT ]

Note that input data have been mean-centered.
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Principal Component Regression - 2

qWhat is the physical sense of the covariance matrix?
qHow can we use it for latent modeling?

v

x

x2
x1

xm

Recap Examine the strength of signals in the direction of unit vector v.

J = 1
N

vT x(i)
i=1

N

∑
2

= 1
N

vT x(i)∑ ⋅ xT (i)v = 1
N
vT x(i)∑ ⋅ xT (i)( )v

= 1
N
vT x(1) ! x(N )⎡

⎣
⎤
⎦

xT (1)
"

xT (N )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

v = 1
N
vT XXTv

1
N
x j (1)xk (1)+!+ x j (N )xk (N ){ } ≅ E[x jxk ]The j-k component of matrix XXT ∴ J ≅ vTC v

Find the strongest direction of signal in the input space :  an eigenvalue problem.

v = argmax
v
vT XXTv − λ(vTv −1)( ) XXTv = λv

Eigenvalues: λmax = λ1 ≥ λ2 ≥!≥ λm ≥ 0

X
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λmax = λ1 ≥ λ2 ≥!≥ λm ≥ 0

Principal Component Regression - 3

We are considering the case where singular. 

λmax = λ1 ≥ λ2 ≥!≥ λm* > 0

XXT ≅ C :

λm = 0,λm−1 = 0,λm*+1 = 0

Suppose that the last (m– m*) eigenvalues are zero.

XXT = [v1,!,vm]

λ1 ! 0 ! 0

" # "
0 λm* 0

! 0 !
0 " 0 " 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

v1
T

!

vm
T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

∴ XXT = λ1v1v1
T +!+ λm*vm*vm*

T + 0+!+ 0

Truncate the series at m* < m.The first m* components can generate                 
and fully explain the data.

In practice, some eigenvalues are 
small but not exactly zero. We can 
truncate them with a threshold.
Percent Accuracy: a measure for 
truncation

µk =
λ1 + λ2 +!+ λk
λ1 + λ2 +!+ λm

×100%

λ1 λ2!!λk!!λm*

100

0

Threshold
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Principal Component Regression – 4
(PCR)

Step 1.  Reduce the input space and represent it with Principal Components

∴ XXT = λ1v1v1
T +!+ λm*vm*vm*

T + 0+!+ 0

Define m*< m Latent Variables using eigenvectors 
associated with the top m* most significant eigenvalues 

z1 = v1
T x, z2 = v2

T x, !, zm* = vm*
T x

Step 2.  Construct a low-dimensional regression on the Principal Components

ŷ = b1z1 + b2z2 + !+ bm*zm*

θ =

b1
b2
!
bm*

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

z1(i)

!
zm*(i)

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

z1(i) ! zm*(i)( )
i
∑
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−1
z1(i)

!
zm*(i)

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

y(i)
i
∑
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Non-Singular

m* < m

x1

x2

ϕm

vm* v1

x

XXT

zm* = vm*
T x

z1 = v1
T x
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Applications
Where is PCR needed (other than COVID testing)?
These days we deal with large data.

Woods Hole
Oceanographic

Institution

Max Plunk Institute

North West Training Vocational College

qHigh input dimension: m >> 1. Initially we do 
not know which variables are significant. We 
include many possible variables in the input 
space.

q Grid sampling of distributed systems
• e.g. Ocean monitoring
• e.g. Weather forecast

q Human body movements
• The human has over 200 muscles.
• A single hand has at least 19 joints.

q Bio informatics
§ e.g. Proteome
• The entire organism of a  yeast  fungus 

contains 4,399  proteins (2006). 
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Context-Oriented Project of 2019 (Not an assignment for this year)
q At least 19 joints are involved in a single human hand, but the movements of the five fingers are highly 

coordinated, following some functional relationship. The central nerve system does not control each 
muscle individually, but control them as a group. In biomechanics and motor control literature, this is 
called “Synergy”.

q This means that 19-dimensional data of the joint angles, when grasping daily choir items, for example, 
are distributed in a much smaller subspace. This can be analyzed by using Principal Components. 

q Santello, et al measured the posture of five fingers when grasping 100 daily chore items. Two principal
components explain over 80 % of data.

M.Santello, M.Flanders, J.F.Soechting, “Postural synergies for tool use,” Journal of Neuroscience. Volume 18: 10105-10115, 1998 Dec.1
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Applying the grasp 
posture synergy theory 
to the 7-fingered hand

1. There exists a type of “Synergy” among 
the 7-fingers.

2. The SR Fingers can be controlled in 
correlation with the five fingers

§ Control Supernumerary Robotic Finger based 
on human finger posture measurements

Hybrid Human-Robot Finger System
5 + 2 = 7
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Grasp Posture Data: 7 fingers (5 human fingers + 2 robotic fingers) 

x = [Joint angles of thumb;
index;
middle;
ring; and 
pinky fingers;
robot finger 1;
robot finger 2]

Robot
Finger 1
3 DOF

Robot
Finger 2
3 DOF

19 joints

6 joints

25 dimensional vectorData Set*
1 1 1 1 1 1
1 2 19 20 21 25
2 2
1 25

40 40
1 25

, , , | , , ,

, | ,
|
|

, | ,

x x x x x x

x x

x x

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

X

! !

!!!! !!!!

!!!! !!!!
!!!! !!!!

!!!! !!!!

Human Robot

40 observations

Mean-
Centering

Data Covariance

cov(X ) = E[(X − X )(X − X )]

≅ 1
N −1

(x i
i=1

N

∑ − x)T (x i − x)
* Note that each measurement of 25 joint angles forms a row vector.
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1

100%r

n

l lµ
l l

+ +
= ´

+ +
!
!!!

Eigenvalues

1 2 nl l l³ ³ ³!

q Input space = 25 dimensional 
space

qOnly the first 3~4 components 
span the data space.
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Now that postural 
synergies exist for the  
7 fingers, can the SR* 

Fingers be controlled in 
correlation with the 

human fingers?

If so, how? * Supernumerary Robotic (SR) Fingers
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A new mathematical tool is needed for the robot finger control.

Human Fingers:
19 joints

Robot Fingers:
6 joints

Data Set
1 1 1 1 1 1
1 2 19 20 21 25
2 2
1 25

40 40
1 25

, , , | , , ,

, | ,
|
|
| ,

x x x x x x

x x

x x

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

X

! !

!!!! !!!!

!!!! !!!!
!!!! !!!!

!!!! !!!!

Human Robot

1 1 1
1 2 19
2 2
1 19

40 40
1 19

, ,

,

x x x

x x

x x

é ù
ê ú
ê ú= ê ú
ê ú
ê úë û

X

!!!

!!!!

!!!!

!!!!

1 1 1
20 21 25
2 2
20 25

40 40
20 25

, , ,

,

,

x x x

x x

x x

é ù
ê ú
ê ú= ê ú
ê ú
ê úë û

Y

!!

!!!!

!!!!

!!!!

Splitting the 
data set into 
Input and 
Output 
matrices

Principal Component 
Regression (PCR)

Or
Partial Least 

Squares Regression
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Principal Component Regression
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Map to Robot 
Finger PostureMeasurement of 

3 most significant 
components

Estimation of Latent 
Variables

Intuitive, implicit control of the Extra Fingers 

Eigen Mode 1

Eigen Mode 2

Eigen Mode 3

Human
Finger

Posture:
19 dim.

Robot Joints
6 DOF

z1
z2
z3


