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Clarification of Linearized KF and Extended KF

qThe nominal trajectory must satisfy the original 
nonlinear state equation.

qConsider deviation from the nominal trajectory:

!x*= f (x*,u,t)
Nominal Trajectory

Actual Trajectory

Δ x

time

x

x*(t)x = x*+Δ x

qLinearize the nonlinear state equation around a nominal trajectory, which is a prescribed time 
function. The resultant system is a Linear Time-Varying system to which Kalman Filter is 
applicable.

Δ !x ≅ ∂ f
∂x x*

Δx + w(t)

Nominal Trajectory

Actual Trajectory

Δ x

time

x

x*(t)

qAs the actual trajectory significantly deviates from 
the nominal trajectory, the linearized model becomes 
erroneous, leading to possible divergence of 
estimation. 
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7.3 Extended Kalman Filter
q Extended Kalman Filter is a significant improvement in two major aspects:

F(t) = ∂ f
∂x x̂(t )

!̂x = F(t)x̂(t)+ K(t)[y(t)− H (t)x̂(t)]

H (t) = ∂h
∂x x*

1) The Jacobian matrices are evaluated not at nominal 
state x*(t) but at an estimated state

F(t) = ∂ f
∂x x*

H (t) = ∂h
∂x x̂(t )

2) State propagation and update use the full nonlinear state equation and measurement equation.

!̂x = f ( x̂(t),t)+ K(t)[y(t)− h( x̂(t),t)]

Nominal
Actual

time

x

x*(t)

Estimated x̂(t)

x(t)

x̂(t)

ŷ(t)
Original Nonlinear equations

q Estimated state          and predicted output           are in the original coordinate system, not the 
deviation from a reference.

x̂(t)
K(t) = P(t)HT (t)R−1(t)
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Unscented Kalman Filter

Weighted mean

!xt|t−1
1* = f ( !xt−1

1 ,t −1)True Mean

!xt−1
n+1

!xt−1
2

!xt−1
n+2

!xt−1
0 = x̂t−1

!xt−1
1 v1

v2 Pt-1q No linearization and Jacobians are involved. 
q Propagation and update are all in the original coordinate 

system.

q Propagate the Sigma points through the state equation, noting 
that the process noise is zero mean.

q For these (2n+1) Sigma points, the weighted mean is 
computed:

q Covariance and state update, too, are in the global coordinate 
system.

!xt|t−1
i* = f ( !xt−1

i ,t −1)+ wt−1, i = 0,",2n

x̂t|t−1,sample = Wi x̂t|t−1
i*

i=0

2n

∑

0

!xt|t−1
n+2* = f ( !xt−1

n+2 ,t −1)

!xt|t−1
2* = f ( !xt−1

2 ,t −1)

!xt|t−1
n+1* = f ( !xt−1

n+1,t −1)

x̂t|t−1,samplePt|t−1,sample = Wi
i=0

i=2n

∑ ( !xt|t−1
i − x̂t|t−1,sample )( !xt|t−1

i − x̂t|t−1,sample )
T +Qt−1

x̂t = x̂t|t−1,sample + Kt[yt − ŷt ,sample] Kt = PxyPy
−1
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Bayes Filter
1. Initial Conditions:                 set t = 1;
2. Belief Propagation:

3. Assimilate     and update the a priori belief

4. Return              . Set t = t + 1 and repeat.

g0(x0 )

gt|t−1(xt ) = fW (xt − f (xt−1,ut−1)) gt−1(xt−1)dxt−1−∞

∞
∫

gt (xt ) =η fV ( yt − h(xt ,t))gt|t−1(xt )

gt (xt )

yt

xt

gt (xt )

xMAP

Median

Modes

Nonlinear map

No longer Gaussian

Approximate to Gaussian

Limitation to UKF

Chapman-Kolmogorov Eq.

Multi-Hypothesis Estimate
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http://moovafrica.com/new
s/wp-
content/uploads/2017/08/se
lf-driving-car-1.jpg

https://gaia.adage.com/images/bin/image/x-
large/241402914.jpg

Late 1980’s Nav Lab, CMU Robotics Institute,
Chuck Thorpe et al.

$6T market
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Hugh Durrant-Whyte John Leonard

J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by tracking geometric 
beacons. IEEE Trans. Robotics and Automation, 7(3):376-382, June 1991.

Simultaneous state (location) and parameter (involved in the map) 
estimation



Simultaneous 
Localization 

and Mapping

: estimating the position and orientation of a vehicle

: generating and updating a map

Localization

Mapping

Synergistic 
effect

A more accurate map can localize the robot more accurately.
More accurate localization can generate a more accurate map. 9
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SLAM
Localization

Mapping

Synergistic 
effect

Augment the state variables by including feature parameters, e.g. line parameters, to be 
estimated. There is no fundamental difference between state estimate and parameter estimate.

If n features (line parameters) are in the map, the state variables are:

Xt = xt yt θt α1 r1 α 2 r2 ! α n rn( )T

If the environment is static, these features are constant but unknown.

Robot location Parameters of Map



Outline
• SLAM formulation

– Landmark estimation via augmentation of state variables
• Vehicle localization based on Kalman Filter

– Vehicle kinematics
– State equation and process noise
– Map representation (a simple example)
– Range data processing: line/wall detection
– Measurement prediction
– Matching: data association
– State update

• Introduction to Particle Filter
• Rao-Blackwell Filter
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v = 1
2
(Δ sr + Δ sl )

Vehicle kinematics

Δθ = 1
b
(Δ sr − Δ sl )

x

y

Δ x = vcos(θ + 1
2
Δθ ) Δ y = vsin(θ + 1

2
Δθ )

12



Deterministic State Equation

1t t t t t t tx A x B u G w+ = + +

xt+1
yt+1
θt+1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

xt
yt
θt

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+

vt cos(θt +
1
2
Δθt )

vt sin(θt +
1
2
Δθt )

Δθt

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

= f (xt , yt ,θt ,Δ sr ,Δ sl )

At =
∂ f
∂xt t

=

1 0 −vt sin(θt +
1
2
Δθt )

0 1 vt cos(θt +
1
2
Δθt )

0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

This state transition 
matrix subsumes inputs:

vt =
1
2
(Δ sr + Δ sl )

Δθ = 1
b
(Δ sr − Δ sl )

xt+1 = At (ut ) xt +Gtwt 13



xt+1 = At (ut ) xt +GtwtProcess Noise Dynamics

Δ sr

Δ sl

b

Δθ

Δ sr
Δ sl

q The wheel displacement (path length) is uncertain due to slip, roughness of the ground, 
feedback control error, etc. We model the uncertainty as additive noise with covariance SS.

q The variance increases in proportion to the distance traveled.

Δ sr = Δ sr + wr , Δ sl = Δ sl + wl

ΣS = cov(Δ sr ,Δ sl ) =
kr Δ sr 0

0 kl Δ sl

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

wt =
wr ,t
wl ,t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Process Noise Dynamics

xt+1
yt+1
θt+1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

xt
yt
θt

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+

vt cos(θt +
1
2
Δθt )

vt sin(θt +
1
2
Δθt )

Δθt

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

= f (xt , yt ,θt ,Δ sr ,Δ sl )

xt+1 = At (ut ) xt +Gtwt

Gt =
∂ f

∂(Δ sr ,Δ sl ) t
=

1
2
cos(θt +

1
2
Δθt )−

Δ s
2b
sin(θt +

1
2
Δθt )

1
2
cos(θt +

1
2
Δθt )+

Δ s
2b
sin(θt +

1
2
Δθt )

1
2
sin(θt +

1
2
Δθt )+

Δ s
2b
cos(θt +

1
2
Δθt )

1
2
sin(θt +

1
2
Δθt )−

Δ s
2b
cos(θt +

1
2
Δθt )

1
b

− 1
b

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

wt =
wr ,t
wl ,t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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vt =
1
2
(Δ sr + Δ sl ) =

Δ s
2

Δθ = 1
b
(Δ sr − Δ sl )



State Propagation Pt+1|t = AtPt At
T +GtΣsGt

T

The vehicle location uncertainty increases as the vehicle travels.
The uncertainty perpendicular to the movement grows more 
rapidly than the longitudinal direction.
As it goes around a circle, the principal axis of the uncertainty 
ellipse is no longer perpendicular to the direction of movement. 16



Map Representation

A simple example. We consider only Line representation.
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q The state of the art is 3D map building with locally tunable resolution based on 
point-cloud data obtained from 3D scanners, e.g. 3D LIDAR, depth cameras.

q Image processing is heavily involved. Kalman Filter is used for integrating RGB
camera image with LIDAR depth information.



Range Sensors  
LIght Detection And Ranging (LIDAR)

2D LIDAR

3D LIDAR

LIDAR is in Polar coordinate.

qr
18



Representing a line in Polar Coordinate

q A straight line with parameters r and a.

x y( ) cosα
sinα

⎛

⎝⎜
⎞

⎠⎟
= xcosα + ysinα = r

q If a LIDAR detects a point on the line:

q

r

ρcos(θ −α )− r = 0
q Suppose that the LIDAR detects N points: 

D ={(ρi ,θ i ) | i = 1,!,N}

q The line parameters, r and a, that minimizes the total squared distances 
between the sample points and the line are given by

(α o ,ro ) = argmin
α ,r

di
2

i=1

N

∑ di = ρi cos(θ i −α )− rwhere
19

Least Squares Estimate

cosα
sinα

⎛

⎝⎜
⎞

⎠⎟

x = ρcosθ , y = ρ sinθ



LIDAR sensor 
Noise covariance

(α o ,ro ) = argmin
α ,r

1
σ 2 di

2

i=1

N

∑

Considering the LIDAR noise covariance
we use the weighted squared distance to minimize.

20

!" becomes larger as the 
distance gets longer.
Depth measurement is 
more inaccurate.



q Due to the LIDAR noise, 
the estimated line 
parameters have 
variability.

(α o ,ro ) = argmin
α ,r

1
σ 2 di

2

i=1

N

∑

Observation Error Covariance

q The uncertainty in estimating the i-th line parameters is quantified with 
error covariance 

Rt
i =

σαα ,t
i σαr ,t

i

σαr ,t
i σ rr ,t

i

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

21

Cov(!, #) = q Here, we treat ! and r as 
measurements, i.e. sensor outputs.
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Measurement Prediction
Based on the stored map and the a priori estimate of the vehicle 
location          , the measurement prediction of the expected 
features are generated.

x̂t|t−1

ŷt
j = h( x̂t|t−1,αmap

j ,rmap
j )

The j-th line parameters stored in a map 

ŷt
j =

α̂ t
j

r̂t
j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x̂t|t−1

j-th wall

Coordinate transformation based on x̂t|t−1



Point Cloud Identified Lines

Line parameter distribution and
Estimation error covariance
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a – r space

Flow of Image Data Processing
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q Matching between predicted line parameters (features) and the measured line 
parameters: Which line matches which line.

Measured Predicted

Δyt
ij =

α t
i

rt
i

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−

α̂ t
j

r̂t
j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Δyt
ij (Py ,t

ij )−1(Δyt
ij )T ≤ g 2

Py ,t
ij = Ht

jPt|t−1(Ht
j )T + Rt

i
Δyt

ij =
α t
i

rt
i

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−

α̂ t
j

r̂t
j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Δyt
ij (Py ,t

ij )−1(Δyt
ij )T ≤ g 2

Py ,t
ij = Ht

jPt|t−1(Ht
j )T + Rt

i

Δyt
ij =

α t
i

rt
i

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−

α̂ t
j

r̂t
j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Δyt
ij (Py ,t

ij )−1(Δyt
ij )T ≤ g 2

Py ,t
ij = Ht

jPt|t−1(Ht
j )T + Rt

i

q Mahalanobis Distance

Find i and j that are within the distance of g.

q Here the distance is weighted by the inverse of the 
innovation covariance.

Data Association

T T
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State Update: Kalman filter estimate of the new vehicle location

a priori estimate of vehicle location

the innovation gained by 
the measurement

Update estimate of the vehicle location

x̂t|t−1, Pt|t−1

x̂t , Pt

Kt ( yt − ŷt ), Py = HtPt|t−1Ht
T + Rt

Measurement yt
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ŷt
j

ŷt
j = h( x̂t|t−1,αmap

j ,rmap
j )
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SLAM
Localization

Mapping

Synergistic 
effect

q Augment the state variables by including the feature parameters, e.g. line parameters, 
to be estimated.

q If n features (line parameters) are in the map, the state variables are:

Xt = xt yt θt α1 r1 α 2 r2 ! α n rn( )T
q If the environment is static, these features are constant but unknown.
q As the features are better known, the updated feature values are used for predicting 

sensor outputs: ŷt
j = h( x̂t|t−1,α̂

j , r̂ j )



Kalman Filter Based SLAM

• Generally, fast computation
• Assume Gaussian noise: In reality, measurement noise and process 

noise are non-Gaussian.
• Extended Kalman Filter is limited in dealing with rapidly changing 

nonlinearity.
• SLAM is limited to slowly changing environment. It is still a future 

issue to deal with dynamically changing environment. 
• Parametric representation of 3D environment is often a challenge.

28
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The map is revised 
and becomes more 
accurate, as the 
robot moves around 
and more images 
are obtained.
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Context-Oriented Project #2
SLAM
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a) Download the first data file, LIDAR-Pedestrian-1. 
Read the file format instruction. Construct an 
Extended Kalman Filter to estimate the trajectory of a 
single pedestrian in the data file.

b) For the same data, implement Unscented Kalman 
Filter and discuss the difference.

c) Download the second data file, LIDAR-Pedestrian-
2, and read the data format instruction. In this file, 
two pedestrians are walking in different directions. 
The two pedestrians get close to each other, and the 
LIDAR cannot detect one pedestrian behind the other 
for some time. Namely, occlusion occurs in the data. 
How can you handle this type of situation, where data 
are not available for several time frames?

Part 1: Pedestrian Tracking 
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Part 2: Robot Localization 

Qt = (ΣS =)cov(Δ sr ,Δ sl ) =
kr Δ sr 0

0 kl Δ sl

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟



SLAM beyond the standard Kalman Filter
• Dealing with non-Gaussian noise properties;
• Dealing with nonlinear process dynamics without 

linearization;
• Bayes filter – Nonlinear dynamics, non-Gaussian noise
• Particle Filter – Monte Carlo implementation of Bayes 

Filter
• Rao-Blackwell Filter – Combine Kalman Filter and Particle 

Filter
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