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Regression Analysis

A statistical method for examining
relationship between multiple variables.

In particular, it is to analyze the $\
influence of independent variables re )
upon dependent variables. % V= bu +C )
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Linear Regression

In general, consider a linear homogeneous equation

where

y=bu,+bu,+---+b u_ (1)
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Problem:
Given a set of data
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Find parameter vector ¢

Dependent variable y is given as an inner product between fdand ¢

y= HTgo (= goTH) : Linear Regression




Remark

Eqg. (1) looks a static relationship between input and

output, but in fact it represents more general cases.

Example 1: Consider a discrete-time dynamical system:

y()=gu(t-1)+gu(t-2)+---+ gmu(t —m)

where

0 =

This system is called Finite Impulse Response (FIR)
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Linear Regressions

Example 2: Consider a nonlinear algebraic system:

X1

y(t)=bx, + b2x13 +byx,x, + b4e_3

where X, b,
3
b
0= | eg# o=| 2 |cq#
XX b,
=3x,
€ ) oy

The nonlinear system can be represented as a linear regression model.

In PS #1, you will find other examples of nonlinear and/or dynamic systems, where
unknown parameters are involved linearly in the governing equation. Obtaining the
unknown parameters from data can be treated as a linear regression problem.



Least Squares Estimate (LSE)

For finding parameters from data, y(¢)and @(?)

Prediction — Error Formalism

, Real y(t) ,
o(t) —| oystem I?rediction Error
y(t|0)—y(t)
, Model ,
0 | .
(t]60) Prediction based on assumed &

Mean Squared Error:
1Y,
v, (0)= FZ(y(t 10)— (1))
=1

Least Squares Estimate (LSE) provides the parameter vector that minimizes
the above Mean Squared Error:

ALS :
6 =ar ngnVN(G)

Argument of function V,,(6) that minimizes the value of the function. °



1 <. )
Prediction Error Formalism VN(H):ﬁZ(«V(”@)‘W»
Broadly used in estimation, system identification, and machine learning
Solution The necessary conditions for V to take a minimum:

dv, (0 : . : :
¢=0 : Differentiation of a scalar function V', with respect to vector 6

(6 1 idxf 0X, 2 iX 99(110)
o t

N
VN(9)=%ZX3 where X, =7(t10)-»(t)
t=1

0. N<Zdx, 06, NZ' 09,
P .
=F2thol.(t) : P(t10)=0p,++0p. ++6 O
t=1
v, (0)
Repeating this d6, 0.(1) .
partial derivative : : : N
. . N : : X
for all i’s yields: aVaNe(O) Z%E(J’)(”Q)_y(t)) o) |=| 0 | mmp - D ((t10)— y(E)p(t)=0
i t=1 : : t=1
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Least Squares Estimate, Solution continued

N Remark 1

Z(J;(f 10)—y()e()=0  Rrecall The regressor data @(1),9(2),---,0(N) must
:1 A . . .

t y(t|9)=9T -qo(t)zqu(t)-H contain a variety of vectors, spanning all the

directions in the m-dimensional space.

N N
(0" ()-0lp(t) =D ¥(2)- ()
gf —_— Z‘y

gDT(t) -@ s a scalar quantity. You can move it anywhere.

N N
{Z co(r)goT(r)}e = () ()

This is called Normal Equation.

Remark 2

When the m by m matrix is non-singular, then the
squared error function Vis convex, possessing a
unique global minimum.

Note D @)@’ (?) isam by m matrix. Assuming

that it is non-singular, ) v,
T oy (0=~ 3 (1) 0 y(1)’
0" = {Zw(r)qﬂm} D (@) 91)
=1 =1

0 , -0,




2.2 The Recursive Least Squares Algorithm

= The Least Squares Estimate we have N -1y $ New Data @ ¢
obtained is an off-line batch processing 0" = [Zco(t)(DT(t)} D () o(1) 4 :
algorithm after collecting all data. =1 =1

= 1
= Suppose that data are observed in sequence, like Carl Friedrich Gauss t-2
did in his planetary observation every night.
= Rather than waiting until all the data are obtained, you want to obtain 0 ]
the optimal estimate based on the data you have obtained so far.
1-2 t-1 t -
A A A A i time
(1) o(t—2) Q(=1) ¢(©)  Now a new observation
(L) P(t—2) y(t=1) ¥ is obtained at time 1,
1 1 how can we update
The optimal estimate based on the é(t— 1) by using

data up to and including time t-1. 0(r—1) wmmm= 0(r) ) and y(1) ?

If the optimal estimate é(l‘) depends only oné(z‘— 1)and new data ¢(¢), ¥(¢), we can forget old data.

Find a recursive formula: 825 (r) = 6% (¢ — 1) + [Correction based on @(t), y(t)] °



Recursive Least Squares (Continued)

oLs (1) = éLS(t —1)+[Correction based on @(t), y(t)]
t ot
This must be the same as the optimal solution %5 = {Zgo(i)qu(i):| D v(@)- (i)
i=1 i=1

Let us derive the recursive formula to update the estimate with new observation ¢(¢)and y(?)

t
Step 1 We assume that enough data are initially available so that the matrix D ¢()¢” (i) is nonsingular.
i=1

-1
t t
Define p = {zgo(i)goT(i)} and B =) y(i) (i) Sothat 6" =PB,
=1 =1
Split each of these into the new observation and the one from the previous step.

-1 Update of B, is straightforward,
B, = y(i)-@(i)+ y(1)-@(1) = B_ + y(1)- 9(2) but P, is different. The inverse
=1 of the m by m matrix must be

¢ 11 computed. Do we need to take

P~ =Y o()e" (i)=Y e()e" ()+ o)’ ()= P +@()¢" (t) matrix inversion in every

i=1 i=1

(12) recursive step of computation?



1 el T
Step 2. The Matrix Inversion Lemma F - =F_+o@®)p (1)

Can we compute P, recursively without taking matrix inversion? Yes, we can.
Pre-multiply P, and post-multiply P, ; to eq.(12):
BEF_ = RE_ P+ Foe' (OF_ (13)
Further post-multiply ¢(¢)
P_o(t) = Po(t)+ P (D)o’ (1) P_ o) = Pe(t)(1+ " (1) B_,p(1))
Note that 1+g0T(t)Pt_1q0(t) is a scalar quantity. Divide both sides by 1+ (pT(t)Pt_lgo(t) Z0

F_p(1)
Bo(t) = ——+
1+ ()F_9(?)
Post-multiplying q’T(t)PH to left-hand side and using (13) yield P (P(f)€0T(f)Pt_1 =5, —f

— 4

T
p=p — BP9 (OF 1| The right-had side is computed with P, ; and ¢(?) alone.
t t—1 T
I+¢@" (OFP_0(t) | (14)

1
t
£ = {ZI‘P(Z')CDT(Z'):I the inverse of a m by m matrix is computed without taking matrix inversion.



Division is only with a scalar quantity.
Much faster to compute than the standard matrix inversion.

P_ o))" (1)P
pp - Ba®0P OF, "
1+ ()F_p(2)
This is a special case of the Matrix Inversion Lemma.
Max Woodbury (1950) has extended it to a general case.

General Matrix Inversion Lemma:
A, B, C, and D are arbitrary matrices with consistent dimensions.

[A +BCD '=4'— 4'B[DA'B+C T ' D4™!

T'\ T
f;‘i fim

o(t) o (1) This agrees with (14).

Check it on your own.



Step 3 Reduce 6"° = PB, to arecursive formula

We can show that the recursive formula is given by the following form

6" ()=0" (t—1)+ K [ y(¢)— $(¢10" (t—1))]

S s

rediction Error: Negative feedback
An optimal gain for correcting the estimate

Goal:
1) Show that 6> = P B, can be written in the above recursive form; and
2) Find the optimal gain K. .

By definition

6"%()-6"°(t-1)=PB - P_B,_,

P_ o) ()P
From Step1and Step2 — (P” — =l €D§ ) (OF, ](Bt1 +y(t)-o(t))—P_B,_,
I+ () F_1p(2)

T
})t—l (D;P Pt—l (Bt—l +y-Q) Omitting (¢)
A

P, ;B, ; cancels =P_ yp-—
l'_



T
B oo F

0" (1)~ 6" (1-1)= F_jyp——2—L(B, +y-9)
l+¢" P_ @
Y TN T T
Scalary can be moved — E—lygo + %ﬁ%% B‘—l;oqo E—lBl—l B %—W
1+¢" P_ @
P
Factoringout _, @ = ";1;)0 [y(t)—quPt_lBt_l]
+ A
¢ La® 0L (r—1)
B_,9@) A
=— [ =" (D0" (1 -1)]
L+ 0" (NP_ (1) —_—
We have obtained the Recursive Least Squares Algorithm Prediction error

0" (1)=0" (t— 1)+ K [ y(t)— $(¢10" (t—1))]

K - Lae@)
where "1+ oT () P_ ()
p_p _Bae0e" (OF,

¢ -1

1+@" () B_(1)



The Recursive Least Squares Algorithm

6" ()=0" (t—1)+ K [ y(t)— $(¢ 10" (t—1))]

P t
where K, = Tl‘—l ¢()
I+ (1)F_p(1) t=12,--
p_p B0 (O,

4 —1

1+ () F_(1)

Initial conditions:

oY

éLS(O) = éo = Arbitrary, e.8.6,=0

Fy = Positive Definite Matrix, e.g. £, =/ |dentity Matrix

Carl Friedrich Gauss discovered the Recursive Least
Squares Algorithm in 1821.




