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Non-Gaussian Distribution
A mean value does not 
represent the true 
distribution of the random 
variables. 

Multi-Hypothesis Estimate

Belief

Belief  : the entire pdf distribution rather than a single value. 
 

Bayes Filter predicts the pdf distribution of a random variable. 
 

  
 
  Propagate   Update 
 
at time t-1    a priori estimate.  a posteriori estimate 

 

g(x)

gt−1(xt−1) ! gt|t−1(xt ) ! gt|t(xt )
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Recap Bayes Filter

Nonlinear map

No longer Gaussian

Approximate to Gaussian

Limitation to UKF

pdf

x xx

g(x)
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Bayes Filter

1. Initial Conditions:                 set t = 1;
2. Belief Propagation:

3. Assimilate     and update the a priori belief

4. Return              . Set t = t + 1 and repeat.

g0(x0 )

gt|t−1(xt ) = fW (xt − f (xt−1,ut−1)) gt−1(xt−1)dxt−1−∞

∞
∫

gt (xt ) =η fV ( yt − h(xt ,t))gt|t−1(xt )

gt (xt )

yt

xt

gt (xt )

xMAP

Median

Modes

Pdf of 
Pr(xt−1)

xt−1 xt

Pr(xt | xt−1,ut−1)

xtChapman-Kolmogorov Eq.

Bayes Rule

Computationally too expensive. 
Not feasible for real-time applications.

State propagation

xt = f (xt−1,ut−1)+ wt−1

yt = h(xt ,t)+ vt

Recap



4

Particle: Non-Parametric Representation of Probability Density

q Parametric Distribution

• Histogram
• Particles

q Draw samples with probability density 
and form a data set: 

fX (x)

fX (x)

!X ={x(1) ,x(2) ,",x(M )}x

x

q Particle             may be populated more densely at a region where             is 
large, reflecting the probability density of           . 

fX (x) fX (x)
fX (x)

q The samples collectively represent the probability distribution.

Each drawn sample is called a “Particle”

q Non-Parametric: Arbitrary Distribution
• Gaussian, Poisson, Gamma, Chi-square
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Monte Carlo Approximation

q “Particles” facilitate the computation of expectation.
Example, k-th order moment of random variable X.

E[X k ] = xk fX (x)dx−∞

∞

∫ ≅ 1
M

x( i)( )k
i=1

M

∑
x

where                                   are particles drawn from           . x(1) ,x(2) ,!,x(M ) fX (x)

q In general,

E h(x)⎡⎣ ⎤⎦ ≅
1
M

h(x(i) )
i=1

M

∑
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Example: Monte Carlo Approximation

2

4

x(1) x(2)x(3) x(8)

x1 x2 x3 x4

E[h(x)] = h(x j )
j=1

4

∑ ⋅ p(x j )

= h(x1)
1
8
+ h(x2 )

2
8
+ h(x3)

4
8
+ h(x4 )

1
8

= 1
8
h(x(1) )+ h(x(2) )+ h(x(3) )

2h(x2 )
! "## $## + h(x(4) )+%

4h(x3)
! "# $# + h(x(8) )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= 1
8

h(x(i) )
i=1

8

∑

The probability is replaced by the multiple particles within the same interval.

Probability Mass Function

1
8

2
8

1
8

4
8

8 particles

q Compute the expectation of h(x) from particles.

Definition of expectation

q The distribution of X is represented by histogram and particles.
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How to Generate Particles: !X
Objective: Generate M particles approximating pdf fX (x)

The Cumulative Distribution Function (cdf) Method

FX (x) = fX (ξ )dξ−∞

x
∫

Steep

Dense
Gentle

Sparse

pdf

cdf
1. Construct the cumulative distribution function

2. Draw a sample from a uniform distribution:

3. Convert the sample        to          by solving 

4. Repeat M times and form a data set

0 ≤ y(i) ≤1
y(i) x(i)

F(x(i) ) = y(i)

!X = x(1) x(2) " x(M ){ }
x

x

1

0
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8.2 Implementing the Bayes Filter Using Particles
Step 1: Propagation 

Instead of computing the Chapman-Kolmogorov equation, we generate M
particles representing                 fromgt|t−1(xt ) gt−1(xt−1)

!Xt−1 = xt−1
(1) xt−1

(2) " xt−1
(M ){ } !Xt|t−1 = xt|t−1

(1) xt|t−1
(2) " xt|t−1

(M ){ }
Recall

Pr(xt | xt−1,ut−1)gt−1(xt−1)dxt−1−∞

∞
∫ = gt|t−1(xt )

This resembles Monte Carlo Approximation: 

But, this is not an algebraic function, but a pdf. E h(x)⎡⎣ ⎤⎦ = h(x) fX (x)dx−∞

∞
∫ ≅ 1

M
h(x(i) )

i=1

M

∑

a posteriori belief a priori belief
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Suppose that many particles exist in

xt−1 ≤ xt−1
(i) ≤ xt−1 + Δxt−1

Draw             from

As many times as the number of particles within 

the interval of .
Then we can approximate . 

xt−1 xt

Pr(xt | xt−1,ut−1)

Repeating this for all small intervals
we can form the particle distribution.

Pr(xt | xt−1,ut−1) comes from the process noise pdf

xt|t−1
(i) = f (xt−1,ut−1)+ wt−1

(i)

xt|t−1
(i) p(xt | xt−1, j ,ut−1)

Δxt−1
p(xt | xt−1, j ,ut−1)

Δxt−1

Draw from pdf Deterministic state
transition

fW (wt−1)
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In reality, random variable xt-1 is a continuous variable. We draw           
for each particle            from .

Pseudo Code

For i = 1 to M
Draw from

End
Form

This approximates . 

fW (wt−1)

xt|t−1
(i)

xt−1
(i) fW

xt|t−1
(i) = f (xt−1

(i) ,ut−1)+ wt−1
(i)

!Xt|t−1 = xt|t−1
(1) xt|t−1

(2) " xt|t−1
(M ){ }

wt−1
(i)

gt|t−1(xt )
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Step 2: Update 

Assimilate a new observation and  update the particles .

gt (xt ) =ηp( yt | xt )gt|t−1(xt )

fV (vt ) : yt = h(xt )+ vt

!Xt|t−1yt

!Xt|t−1 !Xt

yt

Bayes’ Rule

Monte Carlo Approximation cannot be used in its original formula. 
The key technique for computing this is Importance Sampling.
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f (x)

Importance Sampling

Consider two pdf’s,          and , where samples can be drawn from         , but 
not from .

Assume for all x where               .

How can we generate a particle set to represent ?

g(x) g(x)
f (x)

g(x) > 0 f (x) > 0

f (x)

f (x) = f (x)
g(x)

⋅ g(x)

Importance Sampling

W (x) ! f (x)
g(x)

Importance Density

Particles
Importance Weight

g(x)

f (x)
W (x) ! f (x)

g(x)

1

W (x)

x

x

Represent 
as a combination of
Importance Density
and weightW (x)

g(x)

f (x)
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Applying the Importance Sampling Method to Step 2 Update

gt (xt ) =ηp( yt | xt )gt|t−1(xt )

!Xt|t−1 = xt|t−1
(1) xt|t−1

(2) " xt|t−1
(M ){ }

W (x)

This has been represented by particles

Samples have been drawn àg(x)

Given , this term can be 
computed with the 
measurement noise 
model.
Treat this term as an 
importance weight:

How can we generate particles representing             from and ?

yt

gt (xt ) !Xt|t−1 W (x)

Use the Cumulative Density Function (cdf)
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F(x) = f (ξ )dξ
−∞

x
∫ = f (ξ )

g(ξ )
g(ξ )dξ

−∞

x
∫ = w(ξ )g(ξ )dξ

−∞

x
∫

Consider cdf of 

F(x) ≅ 1
W0

W (x(i) )I (x(i) ,x)
i=1

M

∑

I (ξ ,x) =
1:ξ ≤ x
0 :ξ > x

⎧
⎨
⎪

⎩⎪

f (x)

Collect particles up to x.Define a membership function:

W0 = W (x(i) )
i=1

M

∑

Using this function yields

where

xx



cdf

x

x

1

0

The Cumulative Density Function of 

From we can draw new M particles 
to form:

!Xt = xt
(1) xt

(2) " xt
(M ){ }

gt (xt )

W (xt|t−1
(i) ; yt ) = fV ( yt − h(xt|t−1

(i) ))

Gt (xt ) = gt (ξ )dξ−∞

xt∫
= 1
W0

W (xt|t−1
(i)

i=1

M

∑ ; yt )I (xt|t−1
(i) ,xt )

For additive measurement noise, 

Gt (xt )

gt (xt )

gt|t−1(xt )

Gt (xt )

yt = h(xt )+ vtRecall
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Sequential Importance Sampling (SIS)

Given and     , SIS draws                      from                 and computes 
weights                           sequentially.
The weights can be updated recursively as:  

gt|t−1(xt ) yt xt
(i);i = 1!M gt|t−1(xt )

Wt
(i);i = 1!M ,

Wt
(i) ∝Wt−1

(i) p( yt | xt
(i) )p(xt

(i) | xt−1
(i) )

gt−1(xt
(i) | xt−1

(i) )
; i = 1!M ,

Degeneracy Problem
A well-known problem with the SIS particle filter is the degeneracy 
phenomenon.
After a few iterations, all but one particle will have negligibly small weights.
It can be proven that the variance of weights can only increase over time.

x x
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x x

Delete

x

Re-sample

Before the variance of weights becomes very large, delete particles with 
small weights using a threshold.

x

Uniform weightsM particles

Re-sampling
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Cameras and IMU Estimate the 3D position and orientation 
using Particle Filter

Credit: Professor John Leonard



19Credit: Professor John Leonard
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• Rao-Blackwellized Particle Filter
• Color-tile Particle Filter
• Fast SLAM

• Loop-Closure


