
2.160 Identification, Estimation, and Learning

Lecture 2

Part 1 Regression

Least Squares Estimation
for Deterministic Systems

H. Harry Asada
Department of Mechanical Engineering

MIT
1

Regression Analysis
A statistical method for examining
relationship between multiple variables.
In particular, it is to analyze the
influence of independent variables
upon dependent variables.

Independent Variable u
De

pe
nd

en
t V

ar
ia

bl
e

y

y = bu + c

y = bu + c
u : Independent Variable
y : Dependent Variable

Parameters to estimate

y = bu + c ⋅1 y = bu1 + c ⋅u2

Homogeneous form

A special case where u2 = 1 2

Linear Regression

In general, consider a linear homogeneous equation

y = b1u1 + b2u2 +!+ bmum

θ =

b1
!
bm

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

∈ℜm×1

ϕ =

u1
!
um

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

∈ℜm×1

y = θTϕ (=ϕTθ)

Problem:
Given a set of data

ϕ (1) , y(1)

ϕ (2) , y(2)

!

ϕ (N) , y(N)

Find parameter vector q

where

: Parameter vector

: Regressor

: Linear Regression

Dependent variable y is given as an inner product between q and j :

(1)

3

Remark
Eq. (1) looks a static relationship between input and
output, but in fact it represents more general cases.

Example 1: Consider a discrete-time dynamical system:

y(t) = g1u(t −1)+ g2u(t − 2)+!+ gmu(t −m)

Linear
Time-Invariant

System

y(t) = g(τ)u(t −τ)dτ
0

∞
∫

y(t) = gku(t − k)
k=0

∞

∑
θ =

b1
!
bm

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

∈ℜm×1 ϕ =
u(t −1)
!

u(t −m)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
∈ℜm×1

Truncation

g2
g1

gk

g1

g2

u(t − 2)u(t − k)

gk

k
t

u(t)
y(t)

Impulse Responsewhere

y(t)

u(t −1)

Time

This system is called Finite Impulse Response (FIR)
System y = θTϕ
”Given time-series input-output data, find the
parameter values”

à This is a typical System Identification Problem
4

Convolution

Example 2: Consider a nonlinear algebraic system:

Linear Regressions

y(t) = b1x1 + b2x1
3 + b3x1x2 + b4e

−3x1

θ =

b1
b2
b3
b4

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

∈ℜ4×1ϕ =

x1
x1
3

x1x2

e−3x1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

∈ℜ4×1

where

The nonlinear system can be represented as a linear regression model.

In PS #1, you will find other examples of nonlinear and/or dynamic systems, where
unknown parameters are involved linearly in the governing equation. Obtaining the
unknown parameters from data can be treated as a linear regression problem.

5

Least Squares Estimate (LSE)
For finding parameters from data, and ϕ(t)y(t)

Real
System

Model
q

Prediction – Error Formalism

Prediction Error

y(t)

ŷ(t |θ) Prediction based on assumed q

ŷ(t |θ)− y(t)ϕ(t)

Mean Squared Error:

VN (θ) =
1
N

(ŷ(t |θ)− y(t)
t=1

N

∑)2

Least Squares Estimate (LSE) provides the parameter vector that minimizes
the above Mean Squared Error:

θ̂ LS = argmin
θ
VN (θ)

Argument of function that minimizes the value of the function.VN (θ) 6

Prediction Error Formalism
Broadly used in estimation, system identification, and machine learning
Solution

VN (θ) =
1
N

(ŷ(t |θ)− y(t)
t=1

N

∑)2

The necessary conditions for VN to take a minimum:
dVN (θ)
dθ

= 0 : Differentiation of a scalar function VN with respect to vector q

VN (θ) =
1
N

Xt
2

t=1

N

∑ Xt = ŷ(t |θ)− y(t)where∂VN (θ)
∂θi

= 1
N

dXt
2

dXt

∂Xt
∂θit=1

N

∑ = 2
N

Xt
∂ ŷ(t |θ)
∂θit=1

N

∑

= 2
N

Xtϕi(t) : ŷ(t |θ) = θ1ϕ1 +!+θiϕi +!+θmϕm
t=1

N

∑

Repeating this
partial derivative
for all i’s yields:

∂VN (θ)
∂θ1
!

∂VN (θ)
∂θi
!

∂VN (θ)
∂θm

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= 2
N

(ŷ(t |θ)− y(t))

ϕ1(t)
!

ϕi(t)
!

ϕm(t)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

t=1

N

∑ =

0
!
0
!
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

∴ (ŷ(t |θ)− y(t))ϕ(t) = 0
t=1

N

∑

7

(ŷ(t |θ)− y(t))ϕ(t) = 0
t=1

N

∑

Least Squares Estimate, Solution continued

ŷ(t |θ) = θT ⋅ϕ(t) =ϕT (t) ⋅θ

ϕT (t) ⋅θ

[ϕT (t) ⋅θ]ϕ(t) =
t=1

N

∑ y(t) ⋅ϕ(t)
t=1

N

∑

ϕ(t)ϕT (t)
t=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
θ = y(t) ⋅ϕ(t)

t=1

N

∑
This is called Normal Equation.

Note is a m by m matrix. Assuming
that it is non-singular,

θ̂ LS = ϕ(t)ϕT (t)
t=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

y(t) ⋅ϕ(t)
t=1

N

∑

Remark 1
The regressor data must
contain a variety of vectors, spanning all the
directions in the m-dimensional space.

ϕ1 ϕ2

ϕmϕ(t)

ϕ(2)ϕ(N)

ϕ(1)

ϕ(1),ϕ(2),!,ϕ(N)

Remark 2
When the m by m matrix is non-singular, then the
squared error function VN is convex, possessing a
unique global minimum.

VN

θ1 θm

Is a scalar quantity. You can move it anywhere.

Recall

ϕ(t)ϕT (t)∑

Optimal 8

VN (θ) =
1
N

(ϕ(t)Tθ − y(t)
t=1

N

∑)2

2.2 The Recursive Least Squares Algorithm

ϕ(t)
y(t)

§ Suppose that data are observed in sequence, like Carl Friedrich Gauss
did in his planetary observation every night.

§ Rather than waiting until all the data are obtained, you want to obtain
the optimal estimate based on the data you have obtained so far.

time
ϕ(t −1)
y(t −1)

ϕ(t − 2)
y(t − 2)

ϕ(1)
y(1)

θ̂(t −1) θ̂(t)

……………

tt-1t-2

The optimal estimate based on the
data up to and including time t-1.

Now a new observation
is obtained at time t,
how can we update

by using
and ?

y(t)ϕ(t)If the optimal estimate depends only on and new data , , we can forget old data.

Find a recursive formula:

θ̂(t) θ̂(t −1)

θ̂(t −1)
y(t)ϕ(t)

θ̂ LS (t) = θ̂ LS (t −1)+ [Correction based on ϕ(t), y(t)] 9

New Data @
y

j

t-2
t-1

t§ The Least Squares Estimate we have
obtained is an off-line batch processing
algorithm after collecting all data.

θ̂ LS = ϕ(t)ϕT (t)
t=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

y(t) ⋅ϕ(t)
t=1

N

∑

Recursive Least Squares (Continued)
θ̂ LS (t) = θ̂ LS (t −1)+ [Correction based on ϕ(t), y(t)]

This must be the same as the optimal solution θ̂ LS = ϕ(i)ϕT (i)
i=1

t

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

y(i) ⋅ϕ(i)
i=1

t

∑

Pt = ϕ(i)ϕT (i)
i=1

t

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

Bt = y(i) ⋅ϕ(i)
i=1

t

∑

Let us derive the recursive formula to update the estimate with new observation and y(t)ϕ(t)

Step 1

Define and So that θ̂ LS = PtBt

Split each of these into the new observation and the one from the previous step.

Bt = y(i) ⋅ϕ(i)
i=1

t−1

∑ + y(t) ⋅ϕ(t) = Bt−1 + y(t) ⋅ϕ(t)

Pt
−1 = ϕ(i)ϕT (i)

i=1

t

∑ = ϕ(i)ϕT (i)
i=1

t−1

∑ +ϕ(t)ϕT (t) = Pt−1
−1 +ϕ(t)ϕT (t)

Update of Bt is straightforward,
but Pt is different. The inverse
of the m by mmatrix must be
computed. Do we need to take
matrix inversion in every
recursive step of computation?

(12) 10

We assume that enough data are initially available so that the matrix is nonsingular. ϕ(i)ϕT (i)
i=1

t

∑

Step 2. The Matrix Inversion Lemma
Can we compute Pt recursively without taking matrix inversion? Yes, we can.

Pre-multiply Pt and post-multiply Pt-1 to eq.(12):
PtPt

−1Pt−1 = PtPt−1
−1Pt−1 + Ptϕ(t)ϕ

T (t)Pt−1
Further post-multiply ϕ(t)

Pt−1ϕ(t) = Ptϕ(t)+ Ptϕ(t)ϕ
T (t)Pt−1ϕ(t) = Ptϕ(t)(1+ϕ

T (t)Pt−1ϕ(t))

Note that is a scalar quantity. Divide both sides by 1+ϕT (t)Pt−1ϕ(t) 1+ϕT (t)Pt−1ϕ(t) ≠ 0

Ptϕ(t) =
Pt−1ϕ(t)

1+ϕT (t)Pt−1ϕ(t)
Post-multiplying ϕT (t)Pt−1 to left-hand side and using (13) yield

(13)

Ptϕ(t)ϕ
T (t)Pt−1 = Pt−1 − Pt

∴ Pt = Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

The right-had side is computed with Pt-1 and alone.

the inverse of a m by m matrix is computed without taking matrix inversion.

(14)

ϕ(t)

Pt = ϕ(i)ϕT (i)
i=1

t

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

11

Pt
−1 = Pt−1

−1 +ϕ(t)ϕT (t)

Pt = Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

Division is only with a scalar quantity.
Much faster to compute than the standard matrix inversion.

This is a special case of the Matrix Inversion Lemma.
Max Woodbury (1950) has extended it to a general case.

General Matrix Inversion Lemma:
A, B, C, and D are arbitrary matrices with consistent dimensions.

[A+ BCD]−1 = A−1 − A−1B[DA−1B +C−1]−1DA−1

ϕ(t)
Pt−1

ϕT (t)
Pt−1
−1 1

(14)

This agrees with (14).
Check it on your own.

12

Step 3 Reduce θ̂ LS = PtBt to a recursive formula

θ̂ LS (t) = θ̂ LS (t −1)+ Kt[y(t)− ŷ(t |θ̂ LS (t −1))]

We can show that the recursive formula is given by the following form

Prediction Error: Negative feedback
An optimal gain for correcting the estimate

Goal:
1) Show that can be written in the above recursive form; and
2) Find the optimal gain .

By definition

From Step 1 and Step 2

θ̂ LS = PtBt
Kt

θ̂ LS (t)− θ̂ LS (t −1) = PtBt − Pt−1Bt−1

= Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

⎛

⎝
⎜

⎞

⎠
⎟ (Bt−1 + y(t) ⋅ϕ(t))− Pt−1Bt−1

= Pt−1yϕ −
Pt−1ϕϕ

T Pt−1
1+ϕT Pt−1ϕ

(Bt−1 + y ⋅ϕ)Pt-1Bt-1 cancels Omitting (t)
13

θ̂ LS (t) = θ̂ LS (t −1)+ Kt[y(t)− ŷ(t |θ̂ LS (t −1))]

θ̂ LS (t)− θ̂ LS (t −1) = Pt−1yϕ −
Pt−1ϕϕ

T Pt−1

1+ϕT Pt−1ϕ
(Bt−1 + y ⋅ϕ)

=
Pt−1yϕ + Pt−1yϕϕ

T Pt−1ϕ − Pt−1ϕϕ
T Pt−1Bt−1 − Pt−1ϕϕ

T Pt−1y ⋅ϕ
1+ϕT Pt−1ϕ

=
Pt−1ϕ

1+ϕT Pt−1ϕ
[y(t)−ϕT Pt−1Bt−1]

=
Pt−1ϕ(t)

1+ϕT (t)Pt−1ϕ(t)
[y(t)−ϕT (t)θ̂ LS (t −1)]

Kt =
Pt−1ϕ(t)

1+ϕT (t)Pt−1ϕ(t)

Pt = Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

Scalar y can be moved

θ̂ LS (t −1)

We have obtained the Recursive Least Squares Algorithm

where

Prediction error

Factoring out Pt−1ϕ

14

θ̂ LS (t) = θ̂ LS (t −1)+ Kt[y(t)− ŷ(t |θ̂ LS (t −1))]

Kt =
Pt−1ϕ(t)

1+ϕT (t)Pt−1ϕ(t)

Pt = Pt−1 −
Pt−1ϕ(t)ϕ

T (t)Pt−1
1+ϕT (t)Pt−1ϕ(t)

The Recursive Least Squares Algorithm

where
t = 1,2,!

Initial conditions:

θ̂ LS (0) = θ̂0 =

P0 =

θ̂0 = 0

P0 = I

Arbitrary, e.g.

Positive Definite Matrix, e.g. Identity Matrix

Carl Friedrich Gauss discovered the Recursive Least
Squares Algorithm in 1821.

15

