2.160 Identification, Estimation, and Learning

Part 4 Machine Learning and Nonlinear System Modeling

Lecture 20

Neural Networks and
Error Backpropagation

H. Harry Asada
Department of Mechanical Engineering

MIT

Neural Networks

Impact & —_—
Social Interest Marvin Minsky’s
XOR counter example
1940 50 60 70 80 90 2000 10 20
Neuron Model Multi-layer Neural Nets Deep Learning
= McCullock & Pitts, 1943 = Error Backpropagation = Convolutional Neural Nets (CNN),
= Rosenblatt, 1958: = Rumelhart & McClelland, Fukushima 1980
Perceptron 1986; Werbos, 1975 = Recurrent Neural Nets, Elmer 1990,
= Widrow & Hoff, 1960: = Reinforcement Learning, Jordan 1997.
Stochastic Grad. Descent Sutton 1984 = Long Short-Term Memory (LSTM) net,
Hochreiter & Schmidhuber 1997
= GPU

= Successful applications in voice
recognition, image processing 2

Outline

e Artificial Neural Network
— Basic neuron model
— Gradient descent

— Nonlinear classification : XOR
problem

— Multi-layer neural network xl

— The Error Back Propagation \f -
Algorithm ‘

— Properties of and tips for
neural net training

Neuron Model

Cell body

Telodendria

Synaptic terminals

Golgi apparatus

Endoplasmic
reticulum

M|tochondr|on\\§Dendnte

A Human brain has approximately 14 billion neurons.

\\QDendrmc branches - Massively-parallel, distributed processing -
The Hebbian Rule
X4 Input x, out put y

\(P fired. fired
y NS

The 1-th synapse w;, 1s reinforced.

Donald Hebb, 1949

Artificial Neuron Model

Synapses

"l*’l:'] /

X
X3 Supervised Learning

Weighted sum of inputs: z = Z wXx. Output Function: y=g(z)
i=1

Supervised Learning

Classification: Feature I Regression:
Discrete output 2 2 Continuous output
S
Input x
% Synapses
Input Data / Output Data

Prediction Error Method

Neural Net Training Based on Gradient Descent

Weighted sum of inputs: z = 2 WX,

i=1
Consider a linear output function for

n

P = Zwl.xl. Er:tiging , {(yf,x{,...x,{)

i=1

=~

=

A 2

y=g(2): E
j=1.N] z

Find weights using the training data, so that the squared error may

be minimum.

Apply the Gradient Descent Method

] & . .
J =— NI 0)
v Ng,(y »)

Synapses
\ W /

In

Neural Net Training Based on Gradient Descent

Taking partial derivative of the squared error:

7 A——-dJ——EN”'—f@j
(7) w,=—p-grad, J, =—p—> (' =y’

s I N ‘3 ow,

Learning rate [& We assume a linear
— _Z(yf —) output function:

Therefore, the weight change is given by)A/ — Z WX,
=—p— Z(- y)x]

N3
5
Aw, o< (Prediction Error) x (Input)

This resembles Recursive Least Squares, Kalman Filter, etc.

Neural Net Training Based on Gradient Descent

X n
Aw. =—p— v/ —) x! v = wW.X.
l pNJZI,(y »)x, 9 le X,

Drawbacks of this algorithm are:
1 Until you present all the training data, you cannot make any correction
to the weights.
1 As the size of the training data increases, a large memory space is
required to store the results.

N Synapses
a
, vy ..
g Training Data

Memory

The Delta Method: An alternative to the global gradient descent

The Delta Method: An alternative to the global gradient descent

(8) Aw [k]= pSTk]x [k] Ma.ke a quick correction to_the
0 here S(k) — we|ghts for each presentation
©) where o)_ ylk ZWZ of the individual training data.
Correct output for the Predlcted output based on the
training data presented weights w. |k |for the training data

at the & -th time presented at the & -th time

N presentations

JN t X 1 x|N|[,v[N]).
(\R []) (1[|]/[1) | | | | | |
| || || || e o
- \ J
epoch 1 epoch 2 epoch 3 epoch 4 epoch p
W) N training data are randomly presented to the

. neural net, and make weight changes N times.
Wi aninh_\ Repeat this sequence of N presentations, called

) point i il 1
W-space an epoch, many times until it converges.

The Widrow-Hoff Algorithm: Stochastic Gradient Descent

Aw k| = polkx,[k]
where 5(k) = y[k]— > w[k]x,[k]

Compared to the full Gradient Descent method
(batch processing), the Widrow-Hoff algorithm Jy A
may be erratic in each step of weight correction,
since it evaluates the gradient based on only one
data point (one example);

But, no need to store each presentation result; N y
much quicker in making corrections, particularly -
for a large training data set. =2 This property has " ﬁ%_\

led to Massively Parallel and Distributed g

Processing, an important feature of Neural Nets.

Question: Does it converge? Where to converge?

Convergence Analysis of Stochastic Gradient Descent

For linear output functions, Convergence Conditions have been obtained.

* With a constant learning rate p, the
learning does not converge. plk]
* The learning rate p[k] must be varied. 2
* All the weights converge to their optimal =
C
values with probability 1, when the S
following conditions are met Lo
1). lim ,O[k] -0 (Robbins and Monroe, 1951) # of iteration
k—o© ’
This condition prevents all the Example:
2). k weights from converging so fast _ ¢
}(lfolo Zp[i]: +o0 — that error will remain forever plk]= k
=l uncorrected. ,
3). This meets
I Z": []2 o —» This condition ensures that random the three
v — Pl fluctuations are eventually conditions.

suppressed

Linear Separability and Multi-Layer Neural Networks

Limitation to Rosenblatt’s Perceptron and the birth of Multi-Layer Neural Network

Linear Separable Case

Linearly separable. Not linearly separable.

The Exclusive OR Problem

Input Output Can a single neural unit (perceptron) with
0 0 0 :
0 1 1 weights w,, w,, w,, produce the XOR
1 0 1 truth table? NO, you cannot.
1 1 0
X1 X? y
Y. A

1 Class 1
X7 /
z
W, g .z
Wy K "
1 3 k
Z =W X, + WX, + W, Class 0

Set z=0, then 0 =w,x, + w,x, +w,
Class 0 and class 1 cannot be

separated by a straight line. ...

g2(z) = 1 z>0 Not linearly separable.
0 z<Z0

represents a straight line in the x, —x, plane.

Consider a nonlinear function

. 1
/(0,0) ==3

—» C(lass 0

e 1
f(lal} - _g

X L — (| 1
£(1.0) = £(0.1) = % >0 355

replace x, x, by a new variable x,

This 1s apparently a
linear function:
Linearly Separable.

Hidden Unit
Not directly visible from output

Multi-Layer Neural Network

Layer 1 Layer m

1 The above example of XOR
manifested the need for hidden units
for solving a classification problem
that is not linearly separable.

Layer m+1

Layer M

O The hidden unit generates an
internal representation of the input pata
pattern, providing the output unit
with the critical information key to
the correct classification.

Output
Data

=

©

(e

—t
Comparison

O Generalizing this hidden unit’s role,
the architecture of Multi-Layer Input N ¢ Output

Neural Net was developed. Layer Hidden Layers Layer

m] Weight of the connection from
unit 7 to unit j in layer m.

Wl

y. [m] Input to a unit in layer m
from unit i

y; [ml = x.[m*1] Output from unit j in layer m,
J J which is the same as the input to
a unit in layer (m+1)

Multi-Layer Neural Network: Forward Path Computation

(m) _ (m) _.(m)
z" =3 w'x
J

(m) _ (m)N\ __ (m+l)
v, =8,(z;7)=x,

Layer 1

Activation
Function

(Output Function)

1 A 3-layer neural network with the sigmoid output function satisfies the Function Approximation
Theorem, George Cybenko in 1989, Universal Approximator.

U It has been extended to deep neural nets with other output functions.
18

Multi-Layer Neural Network
Layer 2

ﬁComparison

Output
Data

Input
Layer Hidden Layers Layer

Output

How do we train the multi-layer perceptron, given training data
presented sequentially?

The Error Back Propagation Algorithm

The Error Back Propagation Algorithm

Before formulating a general algorithm, let’s work out a simple example.

Example 1 ayer 0 Layer 1 Layer 2 Layer 3

unit 3

unit 2
unit 1
Wi -
<>—‘(Z |82
ﬂ xl

Squared error:
|
Forward Path Computation E = 5()’—)/)

Z, =W, X x,=g,(z,)
2 211 2 252 (Loss Function)

= — Z
Z3 W32x2 X3 g3(3)
2y = WX, x,=8,(z,)

Zg = WXy + W, X, Vs =85(2)=Y

The Error Back Propagation Algorithm

Example

oE
Gradient Descent: Aw, = P
le.
=g5(25) =)
Awg; =—p-grad, E
=—p0 oL dy5 625 Chain Rule
oys dz; Ows,

== p(y—1)g's(25) - X5 = posx;

[

|
53
oz, 5

Zg = WeyXy T W, X,

The Error Back Propagation Algorithm

23 = Wik, x. =g (z.)
unit3 "3 &3\%3
Wiy /| Z,= WX, +W,,X,
& unit 5
unit 4
h Wa2, dg
w,\ %4 (84 A4 Ws3 :
42 Aw;, =—p-gr adeV/ s
Similarly,
e Recall _ _OE dy, 0z, ox; oz,
Aw,, = pows,g', (z,)x, _5 :a_E: 0E dys 8y5 d25 8x3 823 aw32
. 5
: dz; 0y dz, =pOs Ws; g'5(2;) X,
5, —

||
5.

unit 2

unit | W /

21
(>—'(Z3 |82
X1

23 = Wik,
24 = Wiy
2, =Wty

Squared error:
|

Aw, =—p-grad, E

OFE | Oz, Ox, Ox, N Oz; Ox, Ox,

~ "%\ ox, ox, ow,, ox, ox, ow,)

' ' ax
= p(osws, g ' (z;)wy, +5§W§|4Ig 4_1(24_1)W42) 87;
0,

]
53

=p(03wy, +0,w,,)8',(2,)X,

Recursive Computation
Computation of delta’s from the final layer to the first layer

0, =(y—1)g's(z) Aw, = pO.x,
Error 0, =0.w,g',(z,) Aw,, = po.x, Changes
Backpropagation 5) Wssg' (Z) ,05 X, to weights
= (53 5T 54W42)g',(z,) Aw,, = po,x,
Layer 0 Layer | L‘:?:lrj Layer 3

Squared error:

Gradient Descent E = E(."— Yy

The Error Back Propagation Algorithm

Layer0 [> Layer m tavermtl - The Final Layer M

— (O { Predicted
- _— Output
Input : } \. j} y Correct Output
AW(M)
()<L Ji 1
(‘ E=—(y->
. oF O
Gradient Descent Aw=—p—
foow

Learning Rate]
Delta can be computed directly from

the correct output and the predicted
output.

Aw (M) _ p5(M) (M) S :(y_)A,(M)) (29D

Final Layer M

25

The Error Back Propagation Algorithm

o is backpropagated from those in 6“;
layer (m+1) to layer m; Hidden Units -
The computation is similar to the
forward computation
5" =(y-ag,
it k Unit n
<—

Move m = M back to 1

(m) 1 (m) (m+1),,,(m+1)
oy =g (z")) 6" Wy

AN J
Y

Weighted sum y

The Error Back Prapagatian Algorithm

Layer O Layer m Layer m+1 Layer M

Forward Computation :

(m) Z (m) () Inpm"©< } @i

Backward Computation

oM =(y-MNg.
g Z |

Unit n

(m) __ 1 (m) (m+1), , ,(m+1)
0" =g,(z;)Z5k Wi
k
Unit i

The Error Backpropagation Algorithm
[Wobas 1974, 1994] [Rumelhart, Hinton, & Williams,1986]

27

Training of Multi-Layer Neural Nets with Error Backpropagation

1. Sigmoid output function

2. Smoothing of convergence process
3. Local minima

4. Mini-batch

5. Hyperparameters

1. Sigmoid output function

Layer m

Output Function: g(z)) y, il = x 1
x: [m] . g(Zj

Sigmoid Function

A g Unit

ﬁ g(2) = —z
l+e
0.5
/ Nonlinear, differentiable

_ (m) _(m)
Aw, = pd;"x,

g'=g(1-g)

(m) _ 1 (m+1)_ (m+1) For—owo<z <.
0" =g, E o, wy _
- g varlesO< g<1.

Maxg'=1/4
at z=0 g=0.5

(33) Aw, = g'(z,)

The incremental weight

change is proportional to g g
the derivative of g(z).
In these ranges
weight changes are small.
g=0o0r g=1 The largest weight change occurs in this
\z| o1 range.
g=05,z=0
== Zwﬁxi The unit has committed to neither 0 nor 1.
' The error backpropagation algorithm
Once the unit (j) has committed to take forces the unit to react significantly to that
an output value of either “0” or “1”, the input.

weight w, will no longer change very

much for new inputs. \ 1

These properties contribute to stabilizing the learning process.

2. Smoothing of convergence process

A typical failure scenario of Neural Net training is “zig-zag” weight changes.

This results in a very slow convergence or even a divergence.
Suppose that the squared error function has a deep ravine.

The gradient direction bounces back and forth between the two steep walls, as

shown below.

contours of 1so-error
curves

Space of weights

Zig-zag

Slow Convergence

Divergence

\

Gently sloping floor

Steep

Xravine

w

~—

W-space

W
Minimum

point

Adding a momentum term

Remedy: The zig-zag trajectory can be smoothed out by adding a
momentum term to the weight change formula.

Space of weights

welk]

o Aw

‘[k o 1]

wilkl=pox +alAw, [k—1]

/ '\

proportionality Previous weight change
constant

3. Local Minima

Concave Optimization

v

Convex Optimization

Squared Error
Squared Error

n >

1
|
I
|
1
|
I
|
1
|
I
|
1
|
A Weights

A A Weights
Training of a multi-layer neural net is typically a
concave optimization problem. 1 Randomize initial values of the
There are multiple local minima in the weight space. weights, and conduct the
training repeatedly starting at
Remedy: Train a neural net multiple times starting different initial values of the

weights. Each may end up with a

with diverse initial conditions?!, compare the total _ ad
different local minimum.

squared errors, and pick the one that is the smallest
in squared error.

4. Mini-Batch Training

[The classical Widrow-Hoff stochastic gradient descent algorithm makes corrections
to node weights for each single data point presented to the neural network.
[This has pros and cons:
= Pros: not much memory space is required; good for getting rid of local minima
= Cons: induces more noise in error calculations
1 An alternative is Mini-Batch training, where a small set of data points are presented
and the gradient is computed as the average of the gradients obtained from the
small set of data points.

Mini-Batch Size: 8 |

In practice, mini-batch size of 32 is
commonly used.

Layer 1 Layer m

Layer M
»(t10) y(1)

Average
gradient

5. Hyperparameters

dNeural net training performance depends on the structure and parameters that
must be specified prior to training.
dThese parameters differ from node weights, w;;’s, and are called Hyperparameters.

= Learning rate p.

= The number of hidden layers

= The number of units in each layer
= Mini-batch size

" Epoch size

= Qutput function

Summary

e Artificial Neural Network
— Basic neural network model
— Widrow-Hoff stochastic gradient descent method
— Nonlinear classification : XOR problem
— Multi-layer neural net
— The Error Back Propagation Algorithm
— Sigmoid output function and stability
— Momentum term for smoothing
— Local minima
— Mini-batch training
— Hyperparameters

