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Estimating Model Parameters from Input-Output Data
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O Identification Data

D ={(u(t),y(t))|t=12,,N}
O Apply Least Squares Estimate

A i i 5
6y =argmin—— > (¥(1)=3(t|0))

Theoretical Questions

O Consistent Estimate

Does the Least Squares Estimate éN approaches
the true parameter values as the number of data
tends to infinity? .

0., — 90 (true)

N—oo

This is the same property as “Unbiased Estimate”
under the ergodicity assumption.

E[0,]=6,
This requires 1) correct model structure, 2) correct
prediction, and 3) persistently exciting data.

N

A

0 Convergence Speed: How quickly does HN
converge?
» How many data points are required?
» What are major factors influencing
the convergence speed?



Analysis of Asymptotic Distribution of Estimated Parameters

O The major results of the analysis:

1. Convergence rate éN S O* 1 _— \/
At a rate proportional to  ——
VN \
N
2. Error distribution 0 * \ ’
Converges to a Gaussian distribution
3. Covariance O = E[(0.. —0*)(0. — 6% A ) 0
Q=E[(6,-0%)0, —0%) ] 0., 0,00 1000
Depends on
* Noise intensity A
« Sensitivity of predictor ay (t | 9)
to parameter 00
Larger is better.

>

- ) 0, —-0%
4. Confidence Interval Confidence Interval N

Quality of parametric system identification 3



Approach: Central Limit Theorem

O We aim to analyze the distribution of estimated parameters by
applying the Central Limit Theorem (CLT).

O CLT tells us that the mean of samples of size N drawn from a
population with an arbitrary distribution tends towards a normal
distribution, as the sample size tends to infinity.

4 Let X, eiﬁg,t: 1,2,---, be multivariate random variables with

mean
El|X ]=m  forallt.

t
U The covariance is given by

C, =E[(X,-m)(X,-m)'] foralls.

1 Consider the sum of X —m

Jﬁtl

O As N tends to infinity, the distribution of Y converges to a

Gaussian distribution

ﬁoo

Z(X “m)=vN 12(){ —m)=~/N x(Sample Mean)

N
Y = lim \/NZ(X m) ~N(0,C,)

in Statistics

Population with arbitrary distribution

A

y X
Pick N samples

NUINCING)

Compute Sample Mean
1
Higmpre =25 (0 =)+ (29 = 1) oot () = )

N=large

N=small

O We will apply this theorem to find the distribution of parameter estimate 9N for a large N.



Assumptions

1. The predicted output is given as a linear regression:

)A/(t | 0)= QT(D(t) - This condition will be relaxed later.

ARX e(?)
2. The assumed model structure is correct.
T
Y(t)=0,p(t)+e,(1) u(t) B(0) 1 [y
where 90 is the true parameter values, and A(Q)
, . Auto-Regressive model with eXogenous input
A, t=s
Ele,(t)e,(s)]=1 white
0; t#s

.

Actual data are generated by the correct model with the true parameter values.

3. Ergodicity . 1 N
E[Xt] = lim NZXt (ensemble mean) = (time average)
t=1

N—oo
4. Persistent excitation



Asymptotic Distribution Analysis

O Under the assumptions described above, input-output data are collected and the Least Square Estimate of
parameters is computed.

O Where is the distribution of the parameter estimate converging, as we collect a large number of data, N >17?
We aim to analyze the distribution of estimated parameters using CLT.

Step1 If éN is the solution to the least squares estimate for a
given data set of size W, it minimizes the squared error:

dv,.(0)
v =0 ----~ . o), For a finite N, however,
6=0, AR do
NN % av, (6
Vv | O

a0 |,

y, = %2@@ 5(116))




Asymptotic Distribution Analysis

Recall the Mean Value Theorem

Let f{x) be a continuous, differentiable function in
[a,b]. There exists at least one point at x =c¢, where

ML, acecs Moo e
or f(b)=f(a)= f(c)b-a) R £(b)
fo

f(a)

J()




Asymptotic Distribution Analysis

O Under the assumptions described above, input-output data are collected and the Least Square Estimate

of parameters is computed. As we collect a large number of data, N > 1, where is the distribution of the

parameter estimate converging? We aim to analyze the distribution of estimated parameters using CLT.

Step1 |If éN is the solution to the least squares estimate fora dV(6) _
given data set of size N, it minimizes the squared error: g T
dv,(6) O=On
For a finite N, however, N ()
do
6=6,

Recall the Mean Value Theorem

Let f{x) be a continuous, differentiable function in Mean Value

[a,b]. There exists at least one point at x =c¢, where Theorem

_———-— -

av,(0)
do

)

#0

f(b;_ f(a) =f'(c), a<c<b 1)
—-a
or  f(b)- f(a)=f'(c)(b=a) Applying this to <0
/,’ ! \\\\ \\:\\\\\ de

dvy(6) O dT,0)] s . <

B 2 (0)—0y) 5
de |,_, 06 do ] d*,,(6)
0 N 4 (QN_@O):_ >
0 i do |




Step 1. Continued From the previous page (0 _9)___d2VN(9) av,(6)
BN AT, | et ]| e
ompute 16 \ - -

dv,(0) d 1 N d . . T

= —y(t |6 =—— t)—y(t|0)—y(t|6 — t10)=0"o(t
W =000 = RO -F10) < i10)], — il6)=6"p(r

0, 6,

=00 g0, 0=6,"0(0)+ (1)

~dV,(0)
©de

>
=~ Y00 ®
NtZIeO

%

Q Treat ¢,(¢) () as X, in CLT:

ﬁ?”{ )

e ()(1)




Step 2
QO Mean E[X 1= El[e,(1)p(£)]=0, Vi

Recall @(8)=(—y(t =1 -,=y(t=n ) u(t =1 u(t —n,)) & e,(0)
0 Covariance C,(t,5)= E[(X,—m)(X,—m)" = E[p(t)e,(1)p" (s)e,(s)]

cit=s  Cylt)=Elp()g” (e (0)ey (1) \

= E[p(t)p" (1)]- El(e ()’ 1=
Define R = E[p(t)" ()] and A2 E[(e,(1))°]

" fr>s 0 (t)<:>¢(t)(0 (s)e (S) Uncorrelated, independent
C,(t,5) = E[e,()]E[@() 9" (5)e,(s)] =
= Similarly, if ¢ <5 C,(t,5)=0 J
O Both mean and covariance of Xz = O(t)go(t) are unlform over time ¢.

Q Therefore, we can apply CLT to the summation: J—E(w(t)eo(t))

Evaluate the mean and covariance of random variable X, = ¢,(¢)@(¢)

Uncorrelated

C ()= R4, t=s

9S —

> X 0; t#s
(B’)




_szN(e)

SteP 3 From Step 1, the parameter estimation error is given by 6, -6,)=- : dVgH(O) (A)
do 9-0
0 We compute the second derivative matrix: ) - 0
2
Vy(6) d dv,(0) T
= =——— HN—0" o(t 5
s o 40 | " NZ(y( )—60" (1) p(t)
f=¢ b=¢ f=¢
1 i r _
=—2 09 (1) — R (C)
N =1 9:‘5 N—eo
Note that the ergodicity assumption was used in the last line.  E[pg’ ]= 11m Zﬁl’(f)(l’ (1)
O Putting together (A), (B), §1nd (C) )
. d*v,, (6 v, (0 __ I
From (A) \/ﬁ(gN_go):_ Nz( ) JN v(0) =R o(t)e,(t)
db ¢ do 6=6, N t=1
I I . Y, = \/—Z(go(t)eo(t)) > ~N(0,C,)

(C) (B)

Applying CLT, this term converges to Gaussian



Step 3 Continued

JN@,-6,)=R"Y,, ¥, ~N(O,R2) From(B) C,=RA

d The covariance of Yyis RA, but what we want to know is the
covariance of R‘IYN .

O We apply the following transformation rule:

= Supposey =Axand C, = E[xx"]
= Then, T T T T 4T T
Cy,=Elyy |=E[Axx" A" |= AE[xx" |A" = AC A

* Replacing x> 7Y, C, <Rl Ao R, yo R‘IYN
= Covariance of R'Y, is 0=R'RAR™' = AR

Note R is symmetric.

O In summary, the distribution of parameter estimate converges to
a Gaussian distribution with variance

~N@,-6,)~NO,AR™")

1
Q The error |0, —90‘ decreases at a rate ofﬁ :

Large N

Small N

12



Analysis of Asymptotic Distribution of Estimated Parameters

~AN@6,-8,)~N(O,AR™")

N

1
0, — 00‘ decreases at a rate of ——.

/
JN
Question? k ,N

A UROP student took data (N = 10) to identify a \ \

system; the result had some significant standard
deviation. You want to reduce it to 1/10 of the
original result.

How many data does the UROP have to take?

O The error

D>
D>
D>

10 100 1000

13



Discussion

Covariance 0= AR depends on
0 Noise strength: 1 = E[(e(r))*]
Q Input (regressor) signal strength:
R=E[p(t)p’ (1))
(1) =[=y(t=1), - u(t=1),-]"
Q Recall  (¢]0)=0"¢(t)

Therefore, d)A/(t |9)
[)=
p)==

This implies that the regressor pertains to the sensitivity of
the predicted output to parameters

O The higher the sensitivity, the faster the convergence. If
an unnecessary parameter is involved in the model, it
may have a low sensitivity, which slows down
convergence.

Real Syst U
() eal System

Model: 6 -
»(t0)

/Le(l‘)
t 1 t
u(?) B(q)—eb—s o B4 ):

Large N

Small N




Example

Notes on the Computation of Asymptotic Variance from a Model
Consider an ARX model:

.~ B(@)
Y0=Z0" " 1@

where A(q)=1+aq™ and B(q)=bqg . and e(f) is white noise with variance E[e(r)’]=A.Let u(f) be a

e(t) (1)

white random sequence uncorrelated with e(r). Also, assume E[u(t)2 |=L.

We want to identify the system with two unknown parameters 6 =|a b]T based on Prediction
Error Method. The predictor of this ARX system 1s given by a linear regression:

Wt|6)=o()' 6 (2)
with regressor ¢(f) =[—v(t—1). u(t—1)]" . Before conducting experiments, we want to find the asymptotic

variance of parameter estimation. Using an estimated asymptotic variance one can design experiments:;
how many data points will be needed for estimating parameters to meet a given confidence interval, etc.

The following is to obtain the asymptotic variance at predicted parameter values: a=a.b=5> .

15



From the asymptotic variance analysis based on the Central Limit Theorem, the covariance of
estimation error converges to

Q=/R" 3)
where the matrix R is given by

B (1)
R=E [go(r)gor (r)] =E [( ::_ l))]( —y(-1) u(t-1) )}
' 2 | | 4
_ E [1 (r—l)] —E[u(t-1)y(-1)] :[ R,(0) -R, (O)} )
»—E [u(t—1)y(t-1)] E [112 (t— 1)] | R, (0) U

Now the challenge is to find R (0)and R, (0) . These can be computed from the assumed model (1).

Namely,
v(t)+av(t—1) =bu(t —1) +e(r) (5)

16



v(O)+av(t—1)=bu(t—1)+e(r) (5)
From this expression, we can obtain several equations representing the relationships among auto- and
cross-correlations. Multiplying y(z—1) to both sides of (5) and taking expectation yield

E[y(@®)y(t ~D]+aBly(t 1] =bE[u(t ~Dy(t - D]+ W)]

. R ()+aR,(0)=bR (0) (6)
Multiplying y(7) to both sides and taking expectation yield

E[y(t)*1+ aE[y(t)y(t =1)] = bE[u(t =) y(1)] + E[e(t)»(1)].

from which we obtain

. R(0)+aR ,()=bR ()+R,(0) (7)
Similarly, multiplying e(z).u(z), and u(t—1) to (5). respectively, yields,

R,.(0)=2 (8)

R,(0)=0 9)

R,(D)+aR (0)=bu (10)



R (1)+aR (0)=bR (0) R,(0)=2
R,(0)=0

R,(0)+aR,()=bR,,()+ R, (0) R, (D+aR, (0)=bu

Solving these simultaneous equations for R, (0) and R, (0), we find

R, (0)=0
Substituting these into (4) yields

)(1—_7)/
blu+2

=R = 0 .
Q 0 A Signal-to-Noise Ratio \/N(HN 6,)

! N

b’ ,u+/1

R,(0) =

- Parameter a

Parameter b "



Input Design

» Actuator —» Plant —»| Sensor >
Phygical Physical Dynamic
Limat Constraints Range

When conducting experiments, various constraints due to physical limits of the process
must be satisfied. Among others, the input amplitude limit 1s a common constraint

u <lu(n)| <u (15)
where # and u are lower and upper limits.
In general, the larger the input magnitude |u(t)| becomes, the smaller the

asymptotic variance I, becomes. Therefore the input sequence should have large
amplitude most of the time.



Max u(7)

A A
|u(t)| |u (t)|

Max u(?)

/\/\/\/\,\/\I\M NV\/\,\ . ,/\\//\VRV/\V/\%,

Undesirable time Desirable time

To evaluate this aspect of input signal, the following crest factor 1s often used for zero-
mean signals:

max u” (1)
2
C — _I<t<N (16)

PETE
— Y 1 (1)
N =

Note C, > 1; Smaller is better.




19.5 System ID Using Random Signals

The best crest factor (1, the lowest value) i1s achieved with zero mean binary signals:
u(t) = *u . The signal shown below 1s an example of random binary sequence with an

auto-correlation:

R (7)=Elu(u(t—7)]=1-6(7)

(17)

fime

In system identification, random signals are often used for input sequences because of
their superb noise reduction properties. The following is to show this property.

max #°(t)
C?- _ 1<tsN

T 1 N
—Zuz(r)
N3

1

R (7)

One point [at the origin

A

O (@)

»

A

»

—7T

21



19.6 Pseudo-Random Binary Signal (PRBS)

Now that random binary signals are useful for system i1dentification, how can we
generate them? A Pseudo-Random Binary Signal (PRBS) is a periodic, deterministic
signal with white noise like properties. It has been widely used for system identification
as well as for spread spectrum wireless communication and GPS.

Example: A 5 bit shift register

—» 1 |1 |1 |1 |1 [—» —» 0 |0 O |1 |1 O—> |
Output u(?) utput (1)

Initial state

Binary shift register with feedback

Initial state
——
11111000110111010100001001011001111100011011101010000100101100

31 bits=25-1 Repeat the same 31 bits

22



Another choice for input design is
Sinusoidal signal. :

Multi-Sinewave

1

Combining multiple frequencies, ‘

C

r

1

k=1

u(t) = iak cos(@yt + ¢, ) / | \WW"\ / “"“Mﬂ

1 T
Tlme

2 a
Maxu (7) _ Amplitude of u(r) _ ; g

iiuz(f) \/szgna/ power Zp:a—k for a, =a r=1...
V N3 i) 'k 4> ' > P

If all the sinusoids have the same amplitude, the crest factor is 4/2 p , which becomes
large as p increases.



Chirp Signal
Continuously varying the frequency between @, and @, over a time period of
0 <t <T creates a Chirp Signal:

| . o
u(r) = Acos| ayt+(o, _(ol)’_ This is one of the most
| 2T frequently used technique.

The nstantaneous frequency, @, , 1s obtained by differentiating z(z)

14
a>,-=w1+;(a>z—w1)

[ 7\ A (T '
\ | '
/ \ |
/ \ |
/ \ | ‘ ‘
|
. ' |
/

J |
' 1

V4 | .r| Hl
0 F \

| lw H l |
Vv Y 1 l

Time T 0 | 2 3 4 s 24




