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Consistent Estimate / Unbiased Estimate
θ̂N →

N→∞
θ0 E[θ̂N ] = θ0

G(q)
u(t) y(t)

FIR Model

H (q)

Finite Impulse Response model

q Consider a Finite Impulse Response (FIR) Model with 
colored noise.

q Suppose that the goal is to identify G(q) only; no need 
to identify the noise dynamics: v(t) = H(q) e(t).

q Given a data set:

q The Least Squares Estimate is given by

y(t) = b1u(t −1)+ b2u(t − 2)+!+ bnbu(t − nb)+ v(t)

(u(t), y(t)) | t = 1,!,N{ }

θ̂N = argmin
θ

1
2N

( y(t)−ϕ(t)Tθ
t=1

N

∑ )2 = R−1 1
N

y(t)ϕ(t)
t=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟ , R = 1

N
ϕ(t)ϕ(t)T

t=1

N

∑

q Let q0 be the true parameter values; the data are generated  by
q Substituting this into the above LSE yields

y(t) =ϕ(t)Tθ0 + v(t)

θ̂N = R−1 1
N

(ϕ(t)Tθ0 + v(t))ϕ(t)
t=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟ = R

−1 1
N

(ϕ(t)ϕ(t)T )
t=1

N

∑
R

! "## $##
θ0 + R

−1 1
N

v(t)ϕ(t)
t=1

N

∑ = θ0 + R
−1 1
N

v(t)ϕ(t)
t=1

N

∑
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Consistent Estimate / Unbiased Estimate

θ̂N →
N→∞

θ0 E[θ̂N ] = θ0

G(q)
u(t) y(t)

FIR Model

H (q)

q Least Squares Estimate

q If the model is ARX, the regressor j(t) includes y(t-1), y(t-2)… 
Therefore, colored noise v(t) may be correlated with the 
regressor, leading to Biased Estimate.

q On the other hand, if the model is FIR:

y(t) = b1u(t −1)+ b2u(t − 2)+!+ bnbu(t − nb)+ v(t)

q Therefore, Unbiased estimate is guaranteed.

y(t) =ϕ(t)Tθ0 + v(t)

θ̂N = θ0 + R
−1 1
N

v(t)ϕ(t)
t=1

N

∑

ϕ(t) = (u(t −1),u(t − 2),!,u(t − nb))
T

q The FIR’s regressor j(t) does not include y(t-1), y(t-2),….

q As long as u(t-i) is uncorrelated with noise v(t), 

1
N

v(t)ϕ(t)
t=1

N

∑ = 0
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Pros and Cons of FIR System Identification

Pros

q FIR and Least Squares Estimate provide Unbiased/Consistent Estimate, although noise v(t) is colored.

θ̂N →
N→∞

θ0
Cons

q FIR tends to have many parameters to identify: nb ≫1
Slowly-decaying mode 

Impulse 

Response

Time

θ = (b1,b2,!!,bnb )
T

50 ~ 100 parameters

q Slow convergence

q Difficult to meet Persistently Exciting conditions
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Solution
q Time-series data compression is an effective technique for solving this problem.

q−1

q−nb

q−2

b1

b2

bnb

S
.
.
.

.

.

.

y(t)u(t)

Ln(q)

g1

g2

gn

S
.
.
.

.

.

.

y*(t)u(t)
L1(q)

L2(q)

L1(q)

L2(q)

L3(q)

q Input signals are filtered with a series of special filters 
such that the order of FIR may be reduced:

y*(t) = gkxk (t)
k=1

n

∑ , n≪ nb,

xk (t) = Lk (q) u(t)where

Direct FIR Data-Compressed FIR

Filters

x1

x2

xn
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Review of Z-Transform and Complex Functions

q Transfer function using time-shift operator, q.

G(q) = g(k)q−k
k=0

∞

∑

y(t) = G(q)u(t) L[y] = g(k)
k=0

∞

∑ e−Δt⋅sk ⋅ L[u]

Time delay à eΔt⋅s Δt = sampling interval

Laplace Transform

q Replacing          by  z, we have the z-transform of the transfer function: eΔt⋅s

G(z) = g(k)z−k
k=0

∞

∑ …….. a complex function of z = eΔt⋅s

q Poles and Zeros

Zero: a complex number zi that makes transfer function G(z) zero:

Pole: a complex number zj that makes transfer function G(z) infinite: 

G(zi ) = 0

G(z j ) = ∞

(Lecture Notes No.10, Section 10.2.2)

G(s) =
b1s+ b2

s2 + a1s+ a2
Poles

Zero
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Bounded-Input, Bounded-Output Stability (BIBO)

Linea Time-Invariant
System

+c

-c

+c’

-c’

u(t) y(t)

|u(t) |≤ c | y(t) |≤ c '∀t ∀t

Theorem

Transfer function                                        is BIBO stable, ifG(q) = g(k)q−k
k=0

∞

∑ | g(k) |
k=0

∞

∑ < ∞

Proof

| y(t) |= g(k)u(t − k)
k=0

∞

∑ ≤ g(k)u(t − k)
k=0

∞

∑ = g(k) ⋅ u(t − k)
k=0

∞

∑ ≤ g(k) ⋅
k=0

∞

∑ c ≤ c '

Therefore, for any bounded input sequence, the output is bounded.
|u(t) |≤ c ∀t
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Poles of BIBO-stable systems
q Associated with G(q), consider

q If G(q) is  BIBO stable, for

q This implies that there is no pole on and outside the unit circle.

q Treating                                as the Laurent Series Expansion* of 
a complex function, the above results mean that the complex 
functionG(z) is analytic on and outside the unit circle.

G(z) = g(k)z−k
k=0

∞

∑

|G(z) |≤ | g(k) | ⋅ | z |−k
k=0

∞

∑

|G(z) |≤ | g(k) |<
k=0

∞

∑ ∞

| z |−1≤1 (| z |≥1)

G(z) = g(k)z−k∑

Complex Plane

Z-plane

S-plane

If poles exist, they 
must be within the 
unit circle.

| z |= 1

| z |>1

Re

Im

Re

Im

Then

* This function includes terms of negative degree to which Taylor series expansion cannot be applied. 
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15.2 Continuous Time Laguerre Series Expansion

Theorem 1. If a transfer function G(s) is 

1.Strictly Proper, that is, a zero exists at

2. Analytic in the right hand plane, and

3. Continuous in 

Then, there exists a sequence 
such that

where is a positive constant, called a Laguerre pole.

s = ∞, lim
s→∞

G(s) = 0

G(s) = N (s)
D(s)

The order of polynomial 
D(s) is higher than N(s). 

Re[s] ≥ 0
{gk}

G(s) = gk
k=1

∞

∑ 2a
s+ a

s− a
s+ a

⎛
⎝⎜

⎞
⎠⎟

k−1

a > 0

S-plane

Re

Im
No Pole

(Bilinear Transformation in Signal Processing)
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Proof Consider a complex number - to - complex number transformation

z = s+ a
s− a

, s! z

Pick s on the imaginary axis

| z |= | s+ a |
| s− a |

= 1

| z |= | s+ a |
| s− a |

>1

Pick s on the RHS

This is called a bilinear transform.

This bilinear transformation preserves stability and phase.
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The inverse transform of z = s+ a
s− a

,

(s− a )z = s+ a , (z −1)s = (z +1)a , ∴s = z +1
z −1

a

G(s) = G z +1
z −1

a
⎛
⎝⎜

⎞
⎠⎟
! G(z)

Substituting s by                    yields
z +1
z −1

a

Example 1

G(s) = 1
(s+1)(s+ 2)

Obtain           for the following G(s).G(z)
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The inverse transform of z = s+ a
s− a

,

(s− a )z = s+ a , (z −1)s = (z +1)a , ∴s = z +1
z −1

a

G(s) = G z +1
z −1

a
⎛
⎝⎜

⎞
⎠⎟
! G(z)

Substituting s by                    yields
z +1
z −1

a

Example 1

G(s) = 1
(s+1)(s+ 2)

= 1
z +1
z −1

a +1
⎛
⎝⎜

⎞
⎠⎟
z +1
z −1

a + 2
⎛
⎝⎜

⎞
⎠⎟

Obtain           for the following G(s).G(z)

G(z) = (z −1)2

[(a +1)z + a −1][(a + 2)z + a − 2]



13

Proof of Theorem 1 continued

q From the assumption, G(s) is analytic in Re[s] > 0. 
Therefore,            is analytic outside the unit circle.

q This implies that must be expressed as a Laurent 
Expansion

G(z)

∃{gk} such that   G(z) = gk z
−k

k=1

∞

∑

G(z)

q From the assumption, G(s) is strictly proper:

q How about             ?  Note that

q Namely, at z = 1,                   . This implies that 
(z-1) must be a factor of           . 

s = ∞, lim
s→∞

G(s) = 0A zero exists at

G(z) lim
s→∞

z = lim
s→∞

s+ a
s− a

= 1

G(z) = 0
G(z)

G(z) = (z −1)G '(z) = z(1− z−1)G '(z) = z(1− z−1) ⋅ gk z
−k

k=1

∞

∑ 1
2a

= 1− z
−1

2a
gk

s− a
s+ a

⎛
⎝⎜

⎞
⎠⎟

k−1

=
k=1

∞

∑ 2a
s+ a

gk
s− a
s+ a

⎛
⎝⎜

⎞
⎠⎟

k−1

k=1

∞

∑ Q.E.D.
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The Catch
q Our objective is to reduce the order of FIR model; a slowly decaying pole prolongs the 

convergence of impulse response. Such a pole is located near the origin  or the imaginary axis.

q The slow pole can be relocated by using the bilinear transformation. If we set the Laguerre pole 

at the slow pole:

Re

Im

Re

Im

p1p2 z2z1

a = − p1

z1 = z s= p1 =
s− p1
s+ p1

s= p1
= 0

a = − p1 z = s+ a
s− a

q With the slow pole being mapped to the origin in 

the z-plane, the system’s impulse response in the 

z-plane converges instantaneously. Furthermore, 

if other poles in the s-plane are close to p1, they 

are mapped to a region away from the unit circle 

in the z-plane.

G(z) Converges quickly

Can be truncated to a low-order FIR.
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Z-plane
S-plane

| z |= 1

| z |>1Re

Re

ImIm

Marginally Stable

Review of UG Classical Control: Impulse Response

Fast

Slow

Diverging, unstable
Marginally Stable
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Re

Im

Re

Im

p1p2
a

r

j1

-j1

1-1

Dominant Pole

In the z-plane, all the poles 
are confined within a small 
circle of radius r << 1.

G(z) can be approximated to a low-order FIR.

In s, we can write G(s) ≅ gk
k=1

n

∑ 2a
s+ a

s− a
s+ a

⎛
⎝⎜

⎞
⎠⎟

k−1

where n is small.

If there are many poles are involved, we pick 
the Laguerre pole near the dominant pole, that 
is, the pole closest to the imaginary axis in the 
s-plane.

Applying the Laguerre Series Expansion to FIR model compression
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Example 2

Compress the impulse response of the following transfer function using Laguerre Series Expansion.

G(s) = 1
(s+1)2

s = a z +1
z −1

Using the inverse bilinear transformation,

G(z) = (z −1)2

[(a +1)z + (a −1)]2

The poles in the z-space are:
Repeated Poles

z1,2 = − a −1
a +1

The poles in the s-plane are: s = -1, repeated poles.

the transfer function in the z-plane is given by 

Setting the Laguerre pole at a = 1, we can shift both poles to

z1,2 = 0

Re

Im

Re

Im

p1,2 z1,2

a = − p1,2

With a = 1,

G(z) = (z −1)
2

[2z]2
= z

2 − 2z +1
4z2

= 1
4
− 1
2
z−1 + 1

4
z−2 Finite!

Converges at the 2nd order
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Example 2 continued

Re

Im

Re

Im

p1,2 z1,2

a = − p1,2

G(z) = 1
4
− 1
2
z−1 + 1

4
z−2

The Laguerre Series Expansion converges at n = 2.

G(s) = gk
k=1

2

∑ 2a
s+ a

s− a
s+ a

⎛
⎝⎜

⎞
⎠⎟

k−1

= g1
2a
s+ a

+ g2
2a
s+ a

s− a
s+ a

g1

g2
S

y(t)u(t)
L1(q)

L2(q)

L1(q) =
2a
s+ a

L2(q) =
2a
s+ a

s− a
s+ a

Just find 2 parameters.

g1 =
2
4
, g2 = − 2

4withG(s) = 1
(s+1)2
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Example 3
Find the Laguerre pole that effectively compresses the impulse response of the following transfer function

G(s) = 1
(s+1)(s+ 2)

The poles of G(z)

z1 = − a −1
a +1

, z2 = − a − 2
a + 2

Case a z1 z2 legend

1 1 0 1/3
2 1.5 -1/5 1/7
3 2 -1/3 0
4 5 -2/3 -3/7

1
3

1
7− 1

5
− 2
3

− 3
7

Re

Im

− 1
3

Best among the four cases

ao = argmin
a>0

max
a −1
a +1

,
a − 2
a + 2

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
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Ln(q)

g1

g2

gn

S
.
.
.

.

.

.

y(t)u(t)
L1(q)

L2(q)

x1

x2

xn
22


