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M Principal Component Regression: Characterizes the input data space, reduces the input dimension
based on Principal Component Analysis, and regresses on principal components.



Latent Modeling

( ) z ( A
X 1 Y
Preprocessed zZ,
: _| X2 i _| M2
Input Data: x = R y = |
Mean-centered : — :
Normalized X, z .
m

. Y

Latent Space

M Principal Component Regression: Characterizes the input data space, reduces the input dimension
based on Principal Component Analysis, and regresses on principal components.

[ Caveat! Small principal components, which are ignored, may be highly correlated with outputs.
Those components must not be neglected.
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1 Caveat! Small principal components, whic -
Those components must not be neglected.

[ Components having significant correlation with outputs must be involved in the latent space.

[ This requires to analyze both input and output spaces, rather than characterizing the input space
alone.

 Multiple Outputs: Unlike single output regressions, we often need to estimate multiple outputs,
which may be correlated.

[ This lecture will discuss the latent space modeling based on input — output correlation analysiﬁ.

orrelation

- - - - - -



4.3 The Core Algorithm of Multi-Input, Multi-Output Partial Least Squares Regression

Partial Least Squares Regression is a latent modeling method for predicting a set of
outputs in relation to a reduced order inputs. The basic idea is to find a low-dimensional
set of input space variables that is most correlated with a given set of output data. It is to

analyze data in both input space and output space.

Output Space

+ Input Space Y




4.3 The Core Algorithm of Multi-Input, Multi-Output Partial Least Squares Regression

Step 1. Find the directions of a pair of unit vectors, v € R" in the input space and W e R’
in the output space, that maximizes the correlation between the projection of input vector
onto the unit vector, z = vTx, and that of the output vector, r = wTy.

max E[z-r]=max E[v' x-w' y] t Input Space y, | QutputSpace
vV, W vV, W
= mavaE[xyT]w
v, W
Cr \
where :
Covariance of mean-
|v| =1, wi =1 centered random
variables x and y. X1

Qz=v"x is called the score of input x with respecttov, and » = wTy is called the score of
output y with respect to w.



Recap: Covariance Matrix
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Note x and y are mean-centered and normalized.
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Problem

T
H‘}EVLVX v CXYW Subject to |v| =1,

w=1

Solution: Using two Lagrange multipliers for the two constraint equations,

1 1
(v, w’)= arg max vTCXYw— E/IV(VTV —-1)— E/IW(WTW— 1)

N /
\/

2 Constraints

~

A function of both vand w



Solution: Using two Lagrange multipliers,
1 1
(v’,w”) = argmax {VTCXYW— Eﬂ,v(vTv —1)— EAW(WTW— 1)
v, W

The necessary conditions for v and w to maximize the correlation are:

0 J T
E:O = C,yw—4v=0 (35) 8_w:O = (Cyy) v-A,w=0 (3¢)

Note that by definition: (CXY)T =Cyy.



Quick clarification: Transpose of a Covariance Matrix
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Solution: Using Lagrange multipliers,
1 1
(v’,w”) = argmax VTCXYW— Eﬂ,v(vTv —-1)- EAW(WTW— 1)
V,W

The necessary conditions for v and w to maximize the correlation are:

0 J T
E:O = C,yw—4v=0 (35) 8_w:O = (Cyy) v-A,w=0 (3¢)

Note that by definition: (CXY)T =Cyy.

|
From (36), W= TCYXV' Substituting this in (35) yields. CXYCYXV = ﬂv/lwv

This implies that vector v is an eigen vector of matrix CXYCYX

Similarly, from (35) v = 7 CXYW . Substituting this into (36) yields CYXCXYW = }LVAWW

v

This implies that vector w is an eigen vector of matrix ~ C,,,.C



CryCiyv = lvlwv Cy Coyw= /lvlww

Note that in both cases the eigenvalue is the same : lv/lw
We can show that lv = )uw

Pre-multiplying vT to (35), Cwa— lvv =0

VTCXYw— /IVVTV =0 ~A=vC

y xyW

Pre-multiplying 1’ to (36), (CYX)TV—lWW: 0
WT(CXY)T\/— lwawz 0 A = wT(CXY)Tv = vT(CXY)wz A
A=A

CXYCYX and CYXCXY have the same eigenvalues. lv = ﬂ,w =A



Singular Value Decomposition --- Extension of Eigen Decomposition

A matrix A€ Eﬁmxg can be decomposed to

A=vDw!

where /

. s, 0 0
V= v, v, -+ v |eNR
1 2 m 0 s,
v; = the i-th left singular vector of matrix 4 D 0 mx
= s, |eNR
= the eigenvectors of matrix 447 € R™" ¢
which is a real, symmetric matrix having O 0  a rectangular
all real eigenvalues and eigen vectors. : : diagonal matrix
et k 0 0 J
X
W= [ ww, w } e R
s; = the i-th singular value of matrix 4
w; = the i-th right singular vector of matrix 4 = the square root of the non-zero eigenvalue
= the eigenvectors of matrix A’ 4e R of matrix 447 e R™" or AT 4e R, both
which is a real, symmetric matrix having are real-symmetric, positive semi-definite

all real eigenvalues and eigen vectors. matrices with non-negative eigenvalues.



Theorem

The unit vectors, vy and W, that maximize the correlation between input and output
scores, z = vix and r= wTy , are the left and right singular vectors, respectively,
associated with the largest singular value of the cross-correlation matrix CXy.

T
0 " The first right eigen vectors
. \
CXY:[VI ------ ] 0 ; of matrix ~ ~ pwy

YX - XY°

The first (largest) singular value

The first left eigen vectors of  The square root of the largest eigenvalue of C,,C\,
matrix or C. C

- YX - XY
CyCypsmXm
Sy 28y 20

o



Step 2. Optimal Prediction with One Latent Variable

d In Step 1 we have found the component of the input space that is most correlated with the
output;

: T
L We now predict output y based on the score, z=V" X Parameters to
determine
ngh-fjlmensmnal X = Z Inputscore: y ),> :@
Input vector Z=vTx scalar output
A /X1
yeR
i icti : Ix1
Optimal Prediction Input score z g € R
A0
y=9q =z
0 : A|2
q = argmlnE[‘y—y |

q
It is conceivable that this optimal coefficient/parameter vector ¢’ is in the same direction
as unit vector w.
(This is a problem involved in the next assignment.)



Obtaining optimal ¢’
A . T
y=qz=qv Xx

E[(y-3) (-PN=El(y-qv' %) (y—qv x)]

- Note that x and y are random
= yT y—2 quvTx + xTvqTqux] ranty

variables, v and ¢ are not.
=E[y" y-2v"x g+ v xx"vg' q]
= E[y'y]-2v' E[xy" Jg+v' E[xx’ vg' g

The necessary conditions for optimality

a 0 2E[Dx"v+2qv E[xx" v=0

dq Cypil Xm CyysmXm

q = This is called Output Loading Vector.
XXV (We omit superscript o hereafter.)



Step 3. Deflation

1 We have found just one set of latent variables associated with the highest correlation
between input and output.

1 But, an accurate prediction cannot be obtained with just one set of latent variables. Now
we want to find the components of the second and the third highest correlation.

1 The singular Value decomposition of the cross-correlation matrix, however, does not
directly give the second and the third most significant latent variables.

These do not provide the latent variables that
are second most significant (correlated).

(1 To overcome this difficulty, we have to go through the procedure called “Deflation’.



Deflation

U Predicting output y based on the first set of latent variables, we have used
some components involved in the data matrix;

 This component of data matrix must not be used for determining the
second most significant component;

(J We have to remove the components already used in the first round
prediction, and examine the residual components that have the highest
correlation with output.

J Output data

Original

/data

/y’ = J — (the component used for the first round output prediction)

Residue
L Using the output loading vector ¢, the deflated output vector is given by

y'=y-zq
 The deflation of input data matrix is a bit more involved. Collectively, we can write
X'= X —(components used in the 1st round) .



Input Data Deflation: Finding the components used in the 1% round

O The input data matrix can be written as a collection of row vectors,

m .. LNV i}
| | S Data-N :
xX=| xU .. XM J= : : =| - i
( 0 (N) OB = 04— 0C A
MU C £
B
L The score of each data point from x(1) to x(N) can be collectively represented as g' & C
I
z=vix — ( 20 ) ):Z ,
ot o
O Plot Zin N-dimensional space together with ,,---,& él ~ : IZi >
0 Q’H/. Data-2
1 The direction of vector Z indicates the distribution of scores among the
N data points at which the first round latent variables have extracted
information from the original data for predicting the output. ) 5
d We need to delete these components already used in the first round. Data-1 m
Q1 Projecting é‘ionto the plane perpendicular to vector Z yields
T T
E=¢ —fl.Z— Z ZZ z7'7 Note that vectors Z and &, are

el R | x| -
Z‘ ‘Z’ ‘Z|2 Or collectively, X'=X|1

‘ Z|2 row vectors.
/V

Magnitude Direction o



Input Loading Vector

T
O Letusrewrite y'=x ]_Z 2Z

7
1 Note that Z=( Z(l) Z(N) )=( vTx(l) vTx(N) j:VTX

2
1 Therefore ‘Z‘ — ZZT = vTXXTv = VTCXXV

(1 The above deflated data matrix can be written as

7'z | 1
X'=X|1-=5 |=X-—X2"Z=X————XX'W'X
‘Z‘ v Cyyv Vv C v
1 C,
= X- CXvaTXz[]— o |y
viC, v viC, v
XX XX
C..w! C,V
O For each column vector X'=| [ — ;GY X=XxX- TXX VX=X—-pDzZ
v CyyV v Cypv
CV
where p= o Is called Input Loading Vector
v v



Properties of the Deflated Input Data Matrix and the Input Loading Vector

We can show that, with the input loading vector p, the deflated data matrix becomes the smallest.

p’ =argminE[|x'’] <= x'=x—zp=x—pv' x=(I—-pv' )x

p Question:
_ argminE[xT(I—va)T(l— va)x] Why is p not aligned
p with v?
: T T T T _..T T
= argmm{E[x x|-2p Elxx v+ p pv' E[xx ]v} If C, is the identity
N : matrix, v and p are
Necessary conditions for min. .
aligned. However, the
d C.,.v .y
—=0 2C. v+ 2vaC v=0 soopl= XX data are distributed
dp AX AX VTCHV not uniformly over the
This is the same as the input loading vector. Therefore, the loading vector ~ NPUt space:
minimizes the deflated data matrix. In other words, the 15t round latent CXX + K/

variables have taken the most information.

T
C VY

Input Deflation .+ _ (]—povT)x —| J— x Output Deflation : y' =y— Zqo

T
v CXXV



Deflated Covariance and Cross-Covariance Matrices C'XX and C'YX

To compute the second set of latent variables, we need
C'y =Ex'x)']1  C,=E' ()]
for the deflated input and output data.
C'yy = E[(I-pv )’ (I-wp")] « x'=(I-pv)x
=(I-pv))E[xx (I -wp)

=Cyy— vaCXX — CXvaT + vaCXXVpT

C,v
= XX—vaCXX — vaCXXv:CXXv,p: TXX
v Cy v

C'XX _ (]_ va)CXX Similarly, C'YX = CYX(]_ VPT)



Partial Least Squares Regression : Summary

The most significant m™* sets of latent variables are obtained recursively,

Co [11=E[xx"], C,,[1]=E[yx']

Fork=1tom*
C o Lk +1]1=(1 - plk]v" [K])C . [K];

C, [k +1]=C,, [K)(I -v[k]p' [K]);

C o [KIV] C,, [k]V[K]
k]=—2% [k]=
P v[k]" C, [k]V[K] ! v[k]" C . [KIVK]

With these Ioading vectors, x and y can be approximated to

X = Zz k]+ x[m*] Y= Zz k]+ y[m*]



Example

Sample Data (sample size = 100)

3D input 4 2D output : -
X3 Data are generated with the linear model
t + Gaussian noise g~ N(0,0_()S])
2 )\A«MAfh\[NWVVV»j\uﬁkﬁ\qu\MAr\J/VV\A‘[J\JhW[
- 1r
8 0
> -1r
X2
o 2 i
80
X1 -
T
True relationship g 0

0341 0.534 0.727
y=Bx+g B :[ ]

0.309 0.836 0.568

[\

n

Input Covariance

1 08 09
C,=/08 1 05 C, =
09 05 1

Input-Output Cross-Covariance

142 1.17 1.30
1.49 137 1.27

10 20 30 40 50 60 70 80 90 100



First Round Latent Variables

‘Txg, 4 2D output
3D input V2

, q(1)
(D)
x2 w(l) ‘
J’1'
0.627 | 0.631
D)= 0.5515 |, w(1) 0679 (1) =|0.536 1) 0915
v p— R - 5 p— . p— i 5 p—
0.734 P 1 0.989
10.550 0.561 |
— - T =
Singular Value Decomposition 5 0 "M CyV CyyV

: : P= —
of the cross-correlation CXY = [V1 ------ ] 0 : vTCXXv vTC)Q,v
matrix 0 0 :




2 |
et
> 1.
(o} ,\‘z
£ 70
-1 4
. _2 A
100 sample points
before deflation
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4
3 .
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3
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Partial Least Squares Regression

1-st round 2-nd round 3-rd round
, p(l)
] 2
N v(2) L
.\'.3 (2) 0 - x_; (3) 0 A \
-1 - -1 -
-2 | -2
2 _ _
Xy X, x,(2) X, (2) x3) 7 x0)
w(l) 5 5
g(1) Noise The nd 4
v, (2) v, (3) Variance 'N€ 2" round fatent
o . 72 ~variables completely
0 & 0 ® extracted all meaningful
w(2) information, leaving only
o measurement noise.
6 4 2 0 2 4 6 5 4 2 0 2 4 6 ST 4 2 0 2 4 6
M }3(2 Jﬁ(3)

The original data are deflated in the direction of p(1)

for input and that of g(1) for output. ”



Applications of Partial Least Squares Regression (PLSR)

d Chemistry
 Biology
 Biomechanics
L Robotics

(1 Social Science



Applications of Partial Least Squares Regression (PLSR)

1 Chemistry
 Biology

] Biomechanics

] Robotics

[ Social Science

28



Leader-Follower Approach

Two-Person D lemenstratian Robot = Follower

——y

Human = Leéder

The robot‘érms are back-drivable.

Observe Transfer
two-human task execution The identified laws to the robot

Extract
Dynamic Coordination

Control Laws



Extracting Coordinated Control Laws from teaching data by using
Partial Least Squares Regression

Human 1 hand trajectories Human 2 (Robot) hand trajectories
& # ///
t-k Predlctlon t
:
Input Output

= (3 axes of acceleration and

3 axes of angular velocity Y = (4 joint angles of right robot arm

of both hands at time t: 4 joint angles of left robot arm at time t)
___________________ at time t-1; Output joint displacements may be
——————————————————— collinear and correlated to each other.
——————————————————— at time t-k)

x' yl

X=| ! |= 100 x 360 Y= : |=| g
XN N

y
High-dimensional input space



Four Arm Coordination

Human 1 hand trajectories
\J<
t

4

Human 2 (Robot) hand trajectories

A

t-k
Prediction

Variance Explained (%)

8

8

g

8

PLS Analysis

Partial Least Squares Regression

3 components can
explain 85% of the
data.

1 2 3 4
Principal Component



Partial Least Squares Regression: Mode 1




Partial Least Squares Regression: Mode 3




Mode 1

IMU

Human Mode 2 Robot Action

Measurement

Mode 3




IMU
Human
Measurement

Mode 1

Mode 2

Robot Action

Mode 3




Concluding Discussion

* Dealing with high-dimensional input and output spaces is an
important challenge with many practical applications of today’s
interest.

* PCR and PLSR are linear predictors, but as we use more input and
output variables, some nonlinearities can be well captured with the
high-dimensional linear regression.

* We will revisit high-dimensional spaces in Part 4. Specifically, it is
closely related to extended feature space, kernel trick, and lifting
linearization based on Koopman Operator and Dual-Faceted
Linearization of nonlinear dynamical systems.



